МЕТОД ЭЛЕКТРОННО-ИОННОГО БАЛАНСА (МЕТОД ПОЛУРЕАЦИЙ).

Алгоритм написания окислительно-восстановительных реакций методом полуреакций.

- Найти окислитель и восстановитель.
- Определить, какие ионы реально существуют.
- Записать полуреакции окисления и восстановления.
- Сбалансировать число атомов в каждой, добавляя H^+ или H_2O в кислой среде, OH или H_2O в щелочной среде.

Среда реакции	Избыток атомов кислорода (n)	Недостаток атомов кислорода (n)
Кислая	+ $2n H^+$ - $n H_2O +$	+ n H_2O - 2n H^+ +
Нейтральная	$\dots + n H_2O - 2n OH^- + \dots$	+ n H_2O - 2n H^+ +
Щелочная	+ n H_2O - 2n OH^- +	$\dots + 2n OH^ n H_2O + \dots$

[«]Избыток» атомов кислорода в левой части уравнения связывается либо в воду (кислая среда), либо в гидроксогруппы (нейтральная или щелочная).

«*Недостаток*» же атомов кислорода, напротив, возмещается из воды (кислая или нейтральная) и из удвоенного числа гидроксогрупп (щелочная среда).

- Уравнять количество электронов (зарядов).
- Суммировать полуреакции в полное электронно-ионное уравнение (электроны сокращаются).

Кроме алгоритма составления полуреакций, необходимо придерживаться нескольких очевидных правил:

- 1. **В кислой среде** ни в левой, ни в правой части не должно быть ионов OH^- Уравнивание осуществляется за счет ионов H^+ и молекул воды.
- 2. **В щелочной среде** ни в левой, ни в правой части не должно быть ионов H^+ . Уравнивание осуществляется за счет ионов OH^- и молекул воды.
- 3. **В нейтральной среде** ни ионов H^+ , ни OH^- в левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.

Окислители и восстановители. Продукты реакций

Окислители	Восстановители				
Галогены и их соединения (кроме фтора)					
$\Gamma_2 \rightarrow 2\Gamma^-$					
$LO_{-} \rightarrow L_{-}$	$2\Gamma^{-} \rightarrow \Gamma_{2}$				
$\Gamma O_3 \rightarrow \Gamma$					
Соединения серы					
$SO_4^{2-} + KI \rightarrow S^{2-}$	g ² - , g				
$SO_4^{2-} + KBr \rightarrow S$	$S^{2^{-}} \rightarrow S$ $SO_{3}^{2^{-}} \rightarrow SO_{4}^{2^{-}}$ $S \rightarrow SO_{2}$				
$SO_3^{2-} \rightarrow S$	$S \longrightarrow SO_4$				
(в кислой среде)	$3 \rightarrow 3O_2$				
Соединения марганца					
$MnO_4^- \rightarrow MnO_4^{2-}$					
(в щелочной среде)					
MnO_4 \rightarrow Mn^{2+}					
(в кислой среде)	$Mn^{2+} \rightarrow MnO_2$				
$MnO_4^- \rightarrow MnO_2$	$VIII \rightarrow VIIIO_2$				
(в нейтр. среде)					
$MnO_2 \rightarrow Mn^{2+}$					
(в кислой среде)					

Соединения хрома						
$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$		($Cr^{3+} \rightarrow$	CrO ₄ ²⁻ (в щелочной среде) в кислой среде)		
(в кислой среде)		$Cr^{3+} \rightarrow$	$Cr_2O_7^{2-}$	в кислой среде)		
Соединения азота						
$NO_2^- \rightarrow NO$ (в кислой среде)		$NH_3 \rightarrow$	N_2			
HNO_3 с Me → (см. таблицу)		NO_2 \rightarrow	NO_3			
Соединения свинца, олова, железа						
$PbO_2 \rightarrow Pb^{2+}$ (в кислой среде) $Sn^{4+} \rightarrow Sn^{2+}$ $Fe^{3+} \rightarrow Fe^{2+}$		$\begin{array}{ccc} \operatorname{Sn}^{2+} & \to & \operatorname{Sn}^{4+} \\ \operatorname{Fe}^{2+} & \to & \operatorname{Fe}^{3+} \end{array}$				
Среда	Окисление H_2O_2 (H_2O_2 – восстановитель)		=	Восстановление H_2O_2 (H_2O_2 – окислитель)		
В кислой среде $H_2O_2-2\tilde{\mathrm{e}} \to C$				$H_2O_2 + 2H^+ + 2\tilde{e} \rightarrow 2H_2O$		
В щелочной среде	$H_2O_2 + 2OH^-$	$2\tilde{e} \rightarrow O_2 +$	2H ₂ O	$H_2O_2 + 2\tilde{e} \rightarrow 2OH^-$		

Окислители: PbO_2 диоксид свинца, $KClO_3$ хлорат калия, $KClO_4$ перхлорат калия, NaClO гипохлорит натрия, HNO_3 азотная кислота, $KMnO_4$ перманганат калия, $K_2Cr_2O_7$ бихромат калия, Cl_2 хлор, O_3 озон, MnO_2 диоксид марганца, Mn_2O_7 гемигептооксид марганца, ClO_2 диоксид хлора, V_2O_5 пятиокись ванадия, NO_2 диоксид азота и др.

 $H_2O_2 + 2\tilde{e} \rightarrow 2OH^-$

 $H_2O_2 - 2\tilde{e} \rightarrow O_2 + 2H^+$

Восстановители: наиболее типичными представителями являются металлы и гидриды металлов. А так же, соли переходных металлов в степени окисления ниже, чем наиболее устойчивая. Для металлов группы железа и их аналогов, таких как железо, рутений или хром, степень окисления 2+ неустойчива, более предпочтительна 3+. Поэтому, соли железа 2+ являются сильными восстановителями.

Из органических соединений наиболее применимыми восстановителями являются альдегиды и спирты, они окисляются до карбоновых кислот. При этом растет положительный заряд на карбонильном углероде.

Нельзя забывать, что многие вещества, в зависимости от условий реакции, могут выступать в роли как окислителя, так и восстановителя. Например: почти все неметаллы, соли со "средней" степенью окисления центрального атома и любые другие соединения, атомы которых могут, как принимать, так и отдавать электроны. При этом следует учитывать, кто в реакции самый сильный окислитель, а кто, самый сильный восстановитель.

Задание. Написать уравнения окислительно –восстановительных реакций, используя метод электронно-ионного баланса (метод полуреакций).

1) $K_2Cr_2O_7+HCI \rightarrow$

В нейтральной среде

- 2) $K_2Cr_2O_7 + H_2SO_4 + H_2S \rightarrow$
- 3) $CrCl_3 + Br_2 + KOH \rightarrow$
- 4) $KBr + KMnO_4 + H_2O \rightarrow$
- 5) KMnO₄+ $H_2O_2 \rightarrow$
- 6) KMnO₄+ H₂SO₄ + H₂S \rightarrow
- 7) $C_2H_2 + KMnO_4 + H_2O \rightarrow HOOC COOH + ...$

Правила оформления уравнений ОВР, протекающих в кислотной среде.

- 1) Записываем схему реакции.
- 2) Записываем в ионном виде полуреакции окисления и восстановления. Слабые электролиты, твердые и газообразные вещества записываем в молекулярном виде.
- 3) На основании закона сохранения массы и энергии при составлении уравнений полуреакций следует соблюдать баланс веществ и баланс зарядов.
- 4) Для уравнивания числа атомов кислорода в полуреакции в ту часть, где он в избытке, добавляем столько катионов водорода H^+ , чтобы, связавшись с атомами кислорода, образовалась молекула воды:
 - добавляем Н⁺ в ту часть полуреакции, где избыток кислорода;
 - в противоположную часть добавляем H₂O;
 - уравниваем атомы кислорода, затем атомы водорода;
 - подсчитываем заряды в полуреакциях, уравниваем заряд, для этого отнимаем или добавляем электроны.
- 5) Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях.
- 6) Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно <u>умножить</u> множитель на коэффициент, если он стоит перед формулой. Результат суммарное ионное уравнение.
- 7) Сокращаем в правой и левой части одинаковые молекулы и ионы.
- 8) Добавляем недостающие катионы или анионы. Следует учесть, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.

Правила оформления уравнений ОВР, протекающих в щелочной среде.

Для уравнивания атомов водорода и кислорода в уравнениях для щелочной среды:

- добавляем воду в ту часть полуреакций, где избыток кислорода;
- в противоположную часть добавляем удвоенное число гидроксид-ионов;
- перед H_2O ставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед OH^- его удвоенный коэффициент.

Правила оформления уравнений ОВР, протекающих в нейтральной среде.

Среду нейтральной считают условно. На самом деле вследствие гидролиза соли среда может быть слабокислотной или слабощелочной, поэтому полуреакции можно оформлять двумя способами.

Способ 1 — без учета гидролиза соли. Так как среда нейтральная, в левые части полуреакций добавляют воду и тогда одну полуреакцию оформляем как для кислотной среды (добавляется $H_2O + H^+$), а в другую — как для щелочной среды (добавляется $H_2O + OH^-$).

Способ 2 — если при оформлении полуреакций появляется небольшой избыток H^+ или OH^- ионов, то обе полуреакции удобнее и правильнее будет оформлять как для кислотной или щелочной среды.