Необходимость изучения наглядной геометрии в рамках внедрения ФГОС. Рабочая программа "Наглядная геометрия в 5-6 классах": различия между версиями

Материал из SurWiki
Перейти к навигации Перейти к поиску
(/* Необходимость изучения наглядной геометрии в рамках внедрения ФГОС второго поколения. Рабочая программа по «Наглядной геометрии для)
 
(не показано 9 промежуточных версий 3 участников)
Строка 1: Строка 1:
 
Методическая разработка
 
Методическая разработка
  
== Необходимость изучения наглядной геометрии в рамках внедрения ФГОС второго поколения. Рабочая программа по «Наглядной геометрии для 5-6 классов». ==
+
== <font color="#4B0082">Введение</font> ==
 +
 
 +
Геометрия у большинства учащихся вызывает большие затруднения, чем алгебра. Связано это с тем, что недостаточно развито пространственное воображение,что затрудняет выполнение чертежа.Споры о пропедевтическом курсе изучения геометрии велись на протяжении двух столетий.В примерной программе, разработанной в рамках ФГОС второго поколения появилсяраздел "Наглядная геометрия".Пропедевтический курс изучения геометрии необходимо начинать с 5 класса, так как по окончании начальной школы у учащихся объёмные представления более развиты, чем плоскостные.Раннее изучение геометрии окажет положительно повлияет на развитие пространственноговоображения, интереса к предмету в целом.
 +
 
 +
В примерной программе основного общего образования по математике, подготовленной в рамках проекта «Разработка, апробация и внедрение федеральных государственных стандартов общего образования второго поколения» появился раздел «Наглядная геометрия», хотя дискуссии по содержанию и методам преподавания школьного курса геометрии велись более двух столетий.  
  
В примерной программе основного общего образования по математике, подготовленной в рамках проекта «Разработка,
 
апробация и внедрение федеральных государственных стандартов общего образования второго поколения» появился раздел
 
«Наглядная геометрия», хотя дискуссии по содержанию и методам преподавания школьного курса геометрии велись более двух столетий.
 
 
За это время были выдвинуты и обоснованы различные дидактические и психологические положения о том, какой должна быть школьная геометрия — формально-дедуктивной или наглядно-индуктивной. В результате этих дискуссий утвердилась мысль о том, что начинать в школе изучение курса геометрии абстрактно-дедуктивным методом нецелесообразно.
 
За это время были выдвинуты и обоснованы различные дидактические и психологические положения о том, какой должна быть школьная геометрия — формально-дедуктивной или наглядно-индуктивной. В результате этих дискуссий утвердилась мысль о том, что начинать в школе изучение курса геометрии абстрактно-дедуктивным методом нецелесообразно.
 +
 
Автор курса «Практическая геометрия» Кер отмечал: «Старинная Евклидова метода не приспособлена для начинающих учиться геометрии, не может возбудить в малолетнем ребенке живого интереса: во всем свете можно встретить учеников, скучающих на уроке геометрии, когда их ведут с завязанными глазами по лабиринтам логических доказательств».
 
Автор курса «Практическая геометрия» Кер отмечал: «Старинная Евклидова метода не приспособлена для начинающих учиться геометрии, не может возбудить в малолетнем ребенке живого интереса: во всем свете можно встретить учеников, скучающих на уроке геометрии, когда их ведут с завязанными глазами по лабиринтам логических доказательств».
Таким образом, параллельно с абстрактно - дедуктивным направлением отстаивало свои позиции и другое направление, именуемое наглядно-прикладным.
+
 
 +
Таким образом, параллельно с абстрактно-дедуктивным направлением отстаивало свои позиции и другое направление, именуемое наглядно-прикладным.
 +
 
 
Одним из ярких представителей этого направления был великий швейцарский педагог Иоганн Генрих Песталоцци (1746 - 1827). Под влиянием идей Песталоцци в Германии ввели «Пропедевтический курс геометрии», основанный на принципах наглядности. Авторы таких курсов исходили из того, что начинать надо с предметов достаточно наглядных и доступных, таких, как физические тела (пространственные фигуры), и только после этого доводить детей до усвоения абстрактных понятий, как геометрическое тело, поверхность, линия и точка.
 
Одним из ярких представителей этого направления был великий швейцарский педагог Иоганн Генрих Песталоцци (1746 - 1827). Под влиянием идей Песталоцци в Германии ввели «Пропедевтический курс геометрии», основанный на принципах наглядности. Авторы таких курсов исходили из того, что начинать надо с предметов достаточно наглядных и доступных, таких, как физические тела (пространственные фигуры), и только после этого доводить детей до усвоения абстрактных понятий, как геометрическое тело, поверхность, линия и точка.
  
 
Пропедевтический курс геометрии достаточно быстро стал занимать значительное место в начальных школах не только Европы, но и Америки. В России этого периода он, к сожалению, не получил достойного применения.
 
Пропедевтический курс геометрии достаточно быстро стал занимать значительное место в начальных школах не только Европы, но и Америки. В России этого периода он, к сожалению, не получил достойного применения.
 +
 
К изучению систематического курса геометрии учащиеся в VII классе приступают  без пропедевтической подготовки к нему. Включение элементов геометрии в курс математики  V- VI классов мало улучшало положение, подготовка учащихся по геометрии оставалась слабой.
 
К изучению систематического курса геометрии учащиеся в VII классе приступают  без пропедевтической подготовки к нему. Включение элементов геометрии в курс математики  V- VI классов мало улучшало положение, подготовка учащихся по геометрии оставалась слабой.
 +
 
Многие методисты, ученые уже несколько столетий обосновывают необходимость и целесообразность подготовительного курса геометрии, который мог бы служить фундаментом для изучения систематического курса геометрии.  
 
Многие методисты, ученые уже несколько столетий обосновывают необходимость и целесообразность подготовительного курса геометрии, который мог бы служить фундаментом для изучения систематического курса геометрии.  
 +
 
Раннее изучение геометрии положительно влияет на своевременное формирование геометрической зоркости и интуиции, пространственного воображения, творческих способностей учащихся, развитие интереса к геометрическим образам и в целом к геометрии как к науке.
 
Раннее изучение геометрии положительно влияет на своевременное формирование геометрической зоркости и интуиции, пространственного воображения, творческих способностей учащихся, развитие интереса к геометрическим образам и в целом к геометрии как к науке.
 +
 
Основная задача курса геометрии 5-6 классов - заинтересовать, привлечь внимание, показать разнообразие проявлений математики. Очень важно знать, мышление какого типа для ребёнка является преобладающим.
 
Основная задача курса геометрии 5-6 классов - заинтересовать, привлечь внимание, показать разнообразие проявлений математики. Очень важно знать, мышление какого типа для ребёнка является преобладающим.
 +
 +
== Геометрия и мыщление ==
 +
 
По мнению российских психологов, формирование каждого вида мышления и его преобладание в определённый возрастной период зависит не только от условий жизни ребёнка, форм общения с окружающими, но и от форм обучения. 10-12 лет-это уникальный возрастной период, т.к. у детей этого возраста ведущую роль играет образное мышление. В общей структуре мышления, по предложению И.Я. Каплуновича, можно выделить пять пересекающихся подструктур – типов математического мышления. Доминирующий тип и определяет мыслительную деятельность человека в разных практических случаях.
 
По мнению российских психологов, формирование каждого вида мышления и его преобладание в определённый возрастной период зависит не только от условий жизни ребёнка, форм общения с окружающими, но и от форм обучения. 10-12 лет-это уникальный возрастной период, т.к. у детей этого возраста ведущую роль играет образное мышление. В общей структуре мышления, по предложению И.Я. Каплуновича, можно выделить пять пересекающихся подструктур – типов математического мышления. Доминирующий тип и определяет мыслительную деятельность человека в разных практических случаях.
 +
 
Топологическое мышление. Те, у кого оно является доминирующим, легче замечают и легче оперируют такими характеристиками как принадлежит - не принадлежит, внутри - вне.
 
Топологическое мышление. Те, у кого оно является доминирующим, легче замечают и легче оперируют такими характеристиками как принадлежит - не принадлежит, внутри - вне.
 +
 
Порядковое мышление. В деятельности им важна форма и размер объектов  (больше или меньше), их соотношение (правее, левее, выше, ниже), направление движения (по  или против, вверх или вниз).  
 
Порядковое мышление. В деятельности им важна форма и размер объектов  (больше или меньше), их соотношение (правее, левее, выше, ниже), направление движения (по  или против, вверх или вниз).  
 
Метрическое мышление. Эта структура руководствует в человеке количественными запросами.  
 
Метрическое мышление. Эта структура руководствует в человеке количественными запросами.  
 
Алгебраическое мышление. Люди с доминирующим мышлением этого типа  постоянно стремятся к представлению объекта через структурное восприятие. То есть, постоянно разбирают и собирают предмет, пытаются выстроить из частей разные комбинации.  
 
Алгебраическое мышление. Люди с доминирующим мышлением этого типа  постоянно стремятся к представлению объекта через структурное восприятие. То есть, постоянно разбирают и собирают предмет, пытаются выстроить из частей разные комбинации.  
 +
 
Проективное мышление. Самое сложное из всех пяти. Тот, у кого преобладает структура данного типа, склонен рассматривать предмет с разных точек зрения, под разными углами. Разумеется, в каждом человеке присутствуют в разных количествах все эти типы мышления. Существует множество простых тестов, которые позволяют определить ведущую подструктуру математического мышления.  
 
Проективное мышление. Самое сложное из всех пяти. Тот, у кого преобладает структура данного типа, склонен рассматривать предмет с разных точек зрения, под разными углами. Разумеется, в каждом человеке присутствуют в разных количествах все эти типы мышления. Существует множество простых тестов, которые позволяют определить ведущую подструктуру математического мышления.  
 
Основу методики  изучения курса «Наглядная геометрия» составляют пять принципов.
 
Основу методики  изучения курса «Наглядная геометрия» составляют пять принципов.
 +
 
Принцип первый. Содержание курса наглядной геометрии должно развиваться «по спирали».
 
Принцип первый. Содержание курса наглядной геометрии должно развиваться «по спирали».
 
Принцип второй. Изучение геометрического объекта должно строиться на основе приоритета в качестве единицы информации образа, а не слова.
 
Принцип второй. Изучение геометрического объекта должно строиться на основе приоритета в качестве единицы информации образа, а не слова.
 +
 
Принцип третий. Измерение геометрической фигуры должно предваряться работой, направленной на всестороннее её изучение и осознание учащимися проблемы её измерения, возможности или невозможности применения известных способов измерения.
 
Принцип третий. Измерение геометрической фигуры должно предваряться работой, направленной на всестороннее её изучение и осознание учащимися проблемы её измерения, возможности или невозможности применения известных способов измерения.
 +
 
Принцип четвёртый. Изучение геометрических объектов должно происходить на основе сочетания статического и динамического подходов.
 
Принцип четвёртый. Изучение геометрических объектов должно происходить на основе сочетания статического и динамического подходов.
 +
 
Принцип пятый. Основным методом исследования геометрических объектов должен стать эксперимент как реальное физическое действие.
 
Принцип пятый. Основным методом исследования геометрических объектов должен стать эксперимент как реальное физическое действие.
      Сформулируем требования, которым должно соответствовать содержание курса: многообразие геометрических форм и конфигураций,
+
 
которое бы обеспечивало широту формируемых представлений, в сочетании с выделением «главных» объектов; овладение способами действий с геометрическими фигурами также должно быть объектом изучения и входить в содержание образования.  
+
== Аннотация курса ==
 +
 
 +
Сформулируем требования, которым должно соответствовать содержание курса: многообразие геометрических форм и конфигураций, которое бы обеспечивало широту формируемых представлений, в сочетании свыделением "главных"объектов; овладение способами действий сгеометрическими фигурами также должно быть объектом изучения и входить в содержание образования.  
 +
 
 
Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей.  
 
Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей.  
 +
 
Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность.
 
Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность.
 +
 
Рабочая программа содержит пояснительную записку, в которой прописаны цели и задачи курса, особенности развития детей подросткового возраста; содержание тем курса, требования к обучающимся, личностные, метапредметные и предметные результаты обучения, универсальные учебные действия, учебно-тематическое планирование, список использованной литературы.
 
Рабочая программа содержит пояснительную записку, в которой прописаны цели и задачи курса, особенности развития детей подросткового возраста; содержание тем курса, требования к обучающимся, личностные, метапредметные и предметные результаты обучения, универсальные учебные действия, учебно-тематическое планирование, список использованной литературы.
 +
 +
Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей.
 +
 +
Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность.
 +
 +
Рабочая программа содержит пояснительную записку, в которой прописаны цели и задачи курса, особенности развития детей подросткового возраста; содержание тем курса, требования к обучающимся, личностные, метапредметные и предметные результаты обучения, универсальные учебные действия, учебно-тематическое планирование, список использованной литературы.
 +
 +
== СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА ==
 +
 +
=== 5 класс ===
 +
# Введение. Первые шаги в геометрии. Пространство и размерность. Простейшие геометрические фигуры: прямая, луч, отрезок, многоугольник.
 +
#Фигуры на плоскости. Задачи со спичками. Задачи на разрезание и складывание фигур: «сложи квадрат», «согни и отрежь», «край в край» и другие игры. Танграм. Пентамино. Гексамино.  Конструирование из Т. Углы, их построение и измерение. Вертикальные и смежные углы. Треугольник, квадрат Геометрия клетчатой бумаги – игры, головоломки. Паркеты, бордюры.
 +
# Фигуры в пространстве. Многогранники и их элементы. Куб и его свойства. Фигурки из кубиков и их частей. Движение кубиков и их частей.. Игры и головоломки с кубом и параллелепипедом.
 +
# Измерение геометрических величин. Измерение длин, вычисление площадей и объемов Развертки куба, параллелепипеда. Площадь поверхности Объем куба, параллелепипеда. Измерение длин, вычисление площадей и объемов. Развертки куба, параллелепипеда. Площадь поверхности. Объем куба, параллелепипеда.
 +
# Параллельность и перпендикулярность. Параллелограмм, его свойства. Построение параллельных и перпендикулярных прямых, понятие «золотого сечения».
 +
#Занимательная геометрия. Зашифрованная переписка. Задачи со спичками, головоломки, игры.
 +
 +
==='''6  класс'''===
 +
 +
#Повторение. Обзор основных тем 5 класса: конструирование, геометрические головоломки, измерение длин, площадей и объёмов. Конструирование из треугольников, квадратов и прямоугольников, и др. Пространство и его размерность.
 +
#Топологические опыты. Фигуры одним росчерком пера. Листы Мебиуса. Граф. Оригами.
 +
#Задачи на построение. Построение параллелограмма циркулем и линейкой. Основная цель: сформировать у учащихся навыки построения циркулем и линейкой. Фигурки из куба и его частей..
 +
#Координатная плоскость. Координаты, координаты, кооординаты.
 +
Решение задач на построение точек на координатной плоскости, рисование по координатам и наоборот – разгадывание зашифрованного с помощью координат рисунка.
 +
# Симметрия. Зеркальное отражение, Бордюры и орнаменты. Симметрия помогает решать задачи. Правильные многогранники. Основная цель: сформировать у учащихся навыки работы с симметричными фигурами, научить их самих создавать бордюры, паркеты, орнаменты, находить их в природе, быту и т.д. Зеркальное отражение, Бордюры и орнаменты. Симметрия помогает решать задачи. Правильные многогранники. Изготовление правильных многогранников.
 +
#Замечательные кривые. Кривые дракона, лабиринты. Геометрия клетчатой бумаги. Основная цель: расширить кругозор в познании замечательных кривых, их особенностей и приложений. Кривые дракона, лабиринты. Геометрия клетчатой бумаги
 +
#Занимательная геометрия. Основная цель: закрепить навыки образного мышления, графических умений, приемов конструктивной деятельности, умений преодолевать трудности при решении математических задач, геометрической интуиции, познавательного интереса учащихся, развитие глазомера, памяти обучение правильной геометрической речи. Задачи, головоломки, игры.
 +
#Резерв. Итоги года и резервное время.
 +
 +
[[Категория:геометрия]]
 +
[[Категория:5 класс]]
 +
[[Категория:6 класс]]
 +
[[Категория:программы]]

Текущая версия на 23:03, 10 августа 2013

Методическая разработка

Введение

Геометрия у большинства учащихся вызывает большие затруднения, чем алгебра. Связано это с тем, что недостаточно развито пространственное воображение,что затрудняет выполнение чертежа.Споры о пропедевтическом курсе изучения геометрии велись на протяжении двух столетий.В примерной программе, разработанной в рамках ФГОС второго поколения появилсяраздел "Наглядная геометрия".Пропедевтический курс изучения геометрии необходимо начинать с 5 класса, так как по окончании начальной школы у учащихся объёмные представления более развиты, чем плоскостные.Раннее изучение геометрии окажет положительно повлияет на развитие пространственноговоображения, интереса к предмету в целом.

В примерной программе основного общего образования по математике, подготовленной в рамках проекта «Разработка, апробация и внедрение федеральных государственных стандартов общего образования второго поколения» появился раздел «Наглядная геометрия», хотя дискуссии по содержанию и методам преподавания школьного курса геометрии велись более двух столетий.

За это время были выдвинуты и обоснованы различные дидактические и психологические положения о том, какой должна быть школьная геометрия — формально-дедуктивной или наглядно-индуктивной. В результате этих дискуссий утвердилась мысль о том, что начинать в школе изучение курса геометрии абстрактно-дедуктивным методом нецелесообразно.

Автор курса «Практическая геометрия» Кер отмечал: «Старинная Евклидова метода не приспособлена для начинающих учиться геометрии, не может возбудить в малолетнем ребенке живого интереса: во всем свете можно встретить учеников, скучающих на уроке геометрии, когда их ведут с завязанными глазами по лабиринтам логических доказательств».

Таким образом, параллельно с абстрактно-дедуктивным направлением отстаивало свои позиции и другое направление, именуемое наглядно-прикладным.

Одним из ярких представителей этого направления был великий швейцарский педагог Иоганн Генрих Песталоцци (1746 - 1827). Под влиянием идей Песталоцци в Германии ввели «Пропедевтический курс геометрии», основанный на принципах наглядности. Авторы таких курсов исходили из того, что начинать надо с предметов достаточно наглядных и доступных, таких, как физические тела (пространственные фигуры), и только после этого доводить детей до усвоения абстрактных понятий, как геометрическое тело, поверхность, линия и точка.

Пропедевтический курс геометрии достаточно быстро стал занимать значительное место в начальных школах не только Европы, но и Америки. В России этого периода он, к сожалению, не получил достойного применения.

К изучению систематического курса геометрии учащиеся в VII классе приступают без пропедевтической подготовки к нему. Включение элементов геометрии в курс математики V- VI классов мало улучшало положение, подготовка учащихся по геометрии оставалась слабой.

Многие методисты, ученые уже несколько столетий обосновывают необходимость и целесообразность подготовительного курса геометрии, который мог бы служить фундаментом для изучения систематического курса геометрии.

Раннее изучение геометрии положительно влияет на своевременное формирование геометрической зоркости и интуиции, пространственного воображения, творческих способностей учащихся, развитие интереса к геометрическим образам и в целом к геометрии как к науке.

Основная задача курса геометрии 5-6 классов - заинтересовать, привлечь внимание, показать разнообразие проявлений математики. Очень важно знать, мышление какого типа для ребёнка является преобладающим.

Геометрия и мыщление

По мнению российских психологов, формирование каждого вида мышления и его преобладание в определённый возрастной период зависит не только от условий жизни ребёнка, форм общения с окружающими, но и от форм обучения. 10-12 лет-это уникальный возрастной период, т.к. у детей этого возраста ведущую роль играет образное мышление. В общей структуре мышления, по предложению И.Я. Каплуновича, можно выделить пять пересекающихся подструктур – типов математического мышления. Доминирующий тип и определяет мыслительную деятельность человека в разных практических случаях.

Топологическое мышление. Те, у кого оно является доминирующим, легче замечают и легче оперируют такими характеристиками как принадлежит - не принадлежит, внутри - вне.

Порядковое мышление. В деятельности им важна форма и размер объектов (больше или меньше), их соотношение (правее, левее, выше, ниже), направление движения (по или против, вверх или вниз). Метрическое мышление. Эта структура руководствует в человеке количественными запросами. Алгебраическое мышление. Люди с доминирующим мышлением этого типа постоянно стремятся к представлению объекта через структурное восприятие. То есть, постоянно разбирают и собирают предмет, пытаются выстроить из частей разные комбинации.

Проективное мышление. Самое сложное из всех пяти. Тот, у кого преобладает структура данного типа, склонен рассматривать предмет с разных точек зрения, под разными углами. Разумеется, в каждом человеке присутствуют в разных количествах все эти типы мышления. Существует множество простых тестов, которые позволяют определить ведущую подструктуру математического мышления. Основу методики изучения курса «Наглядная геометрия» составляют пять принципов.

Принцип первый. Содержание курса наглядной геометрии должно развиваться «по спирали». Принцип второй. Изучение геометрического объекта должно строиться на основе приоритета в качестве единицы информации образа, а не слова.

Принцип третий. Измерение геометрической фигуры должно предваряться работой, направленной на всестороннее её изучение и осознание учащимися проблемы её измерения, возможности или невозможности применения известных способов измерения.

Принцип четвёртый. Изучение геометрических объектов должно происходить на основе сочетания статического и динамического подходов.

Принцип пятый. Основным методом исследования геометрических объектов должен стать эксперимент как реальное физическое действие.

Аннотация курса

Сформулируем требования, которым должно соответствовать содержание курса: многообразие геометрических форм и конфигураций, которое бы обеспечивало широту формируемых представлений, в сочетании свыделением "главных"объектов; овладение способами действий сгеометрическими фигурами также должно быть объектом изучения и входить в содержание образования.

Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей.

Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность.

Рабочая программа содержит пояснительную записку, в которой прописаны цели и задачи курса, особенности развития детей подросткового возраста; содержание тем курса, требования к обучающимся, личностные, метапредметные и предметные результаты обучения, универсальные учебные действия, учебно-тематическое планирование, список использованной литературы.

Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей.

Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность.

Рабочая программа содержит пояснительную записку, в которой прописаны цели и задачи курса, особенности развития детей подросткового возраста; содержание тем курса, требования к обучающимся, личностные, метапредметные и предметные результаты обучения, универсальные учебные действия, учебно-тематическое планирование, список использованной литературы.

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

5 класс

  1. Введение. Первые шаги в геометрии. Пространство и размерность. Простейшие геометрические фигуры: прямая, луч, отрезок, многоугольник.
  2. Фигуры на плоскости. Задачи со спичками. Задачи на разрезание и складывание фигур: «сложи квадрат», «согни и отрежь», «край в край» и другие игры. Танграм. Пентамино. Гексамино. Конструирование из Т. Углы, их построение и измерение. Вертикальные и смежные углы. Треугольник, квадрат Геометрия клетчатой бумаги – игры, головоломки. Паркеты, бордюры.
  3. Фигуры в пространстве. Многогранники и их элементы. Куб и его свойства. Фигурки из кубиков и их частей. Движение кубиков и их частей.. Игры и головоломки с кубом и параллелепипедом.
  4. Измерение геометрических величин. Измерение длин, вычисление площадей и объемов Развертки куба, параллелепипеда. Площадь поверхности Объем куба, параллелепипеда. Измерение длин, вычисление площадей и объемов. Развертки куба, параллелепипеда. Площадь поверхности. Объем куба, параллелепипеда.
  5. Параллельность и перпендикулярность. Параллелограмм, его свойства. Построение параллельных и перпендикулярных прямых, понятие «золотого сечения».
  6. Занимательная геометрия. Зашифрованная переписка. Задачи со спичками, головоломки, игры.

6 класс

  1. Повторение. Обзор основных тем 5 класса: конструирование, геометрические головоломки, измерение длин, площадей и объёмов. Конструирование из треугольников, квадратов и прямоугольников, и др. Пространство и его размерность.
  2. Топологические опыты. Фигуры одним росчерком пера. Листы Мебиуса. Граф. Оригами.
  3. Задачи на построение. Построение параллелограмма циркулем и линейкой. Основная цель: сформировать у учащихся навыки построения циркулем и линейкой. Фигурки из куба и его частей..
  4. Координатная плоскость. Координаты, координаты, кооординаты.

Решение задач на построение точек на координатной плоскости, рисование по координатам и наоборот – разгадывание зашифрованного с помощью координат рисунка.

  1. Симметрия. Зеркальное отражение, Бордюры и орнаменты. Симметрия помогает решать задачи. Правильные многогранники. Основная цель: сформировать у учащихся навыки работы с симметричными фигурами, научить их самих создавать бордюры, паркеты, орнаменты, находить их в природе, быту и т.д. Зеркальное отражение, Бордюры и орнаменты. Симметрия помогает решать задачи. Правильные многогранники. Изготовление правильных многогранников.
  2. Замечательные кривые. Кривые дракона, лабиринты. Геометрия клетчатой бумаги. Основная цель: расширить кругозор в познании замечательных кривых, их особенностей и приложений. Кривые дракона, лабиринты. Геометрия клетчатой бумаги
  3. Занимательная геометрия. Основная цель: закрепить навыки образного мышления, графических умений, приемов конструктивной деятельности, умений преодолевать трудности при решении математических задач, геометрической интуиции, познавательного интереса учащихся, развитие глазомера, памяти обучение правильной геометрической речи. Задачи, головоломки, игры.
  4. Резерв. Итоги года и резервное время.