К вопросу о будущем...: различия между версиями
Pauc (обсуждение | вклад) |
|||
(не показано 309 промежуточных версий 3 участников) | |||
Строка 8: | Строка 8: | ||
− | [[Файл:Apokalipsis050.jpg| | + | [[Файл:Apokalipsis050.jpg|510px|thumb|left|Будущее может быть таким...]] |
− | [[Файл:1337862344_nature-eur-0-35.jpg| | + | [[Файл:1337862344_nature-eur-0-35.jpg|490px|thumb|right|...а может быть таким...]] |
− | |||
+ | ---- | ||
==<FONT size="5" COLOR=purple>''Авторы проекта''</FONT>== | ==<FONT size="5" COLOR=purple>''Авторы проекта''</FONT>== | ||
− | <font size=" | + | <font size="3" >'''[[Участник:Pauc|Зиганшин Раис]], [[Участник: Зверев Иван|Зверев Иван]]'''</FONT> , ученики 9В класса |
− | |||
==<FONT size="5" COLOR=purple>''Руководитель проекта''</FONT>== | ==<FONT size="5" COLOR=purple>''Руководитель проекта''</FONT>== | ||
− | <font size=" | + | <font size="3" >'''[[Участник:Громова Светлана Федоровна|Громова Светлана Фёдоровна]]'''</FONT> , учитель информатики |
− | , учитель информатики | + | |
+ | |||
+ | ==<FONT size="5" COLOR=indigo>''Актуальность''</FONT>== | ||
+ | Выживание современного человека напрямую зависит от того, как он будет использовать имеющиеся природные ресурсы. Если человек в ближайшее время не найдет альтернативные источники энергии, а также будет небрежно использовать уже имеющиеся, то его судьба будет плачевной. | ||
+ | ==<FONT size="5" COLOR=indigo>''Объект исследования''</FONT>== | ||
+ | Природные источники энергии | ||
− | ==<FONT size="5" COLOR=indigo>'' | + | ==<FONT size="5" COLOR=indigo>''Предмет исследования''</FONT>== |
− | + | Энергосбережение, альтернативные источники энергии | |
==<FONT size="5" COLOR=indigo>''Гипотеза''</FONT>== | ==<FONT size="5" COLOR=indigo>''Гипотеза''</FONT>== | ||
− | Неправильное, неэкономное использование | + | Неправильное, неэкономное использование природных (энергетических) ресурсов человеком приведёт к их истощению. А истощение топлива приведёт к экологическому коллапсу... |
Строка 42: | Строка 46: | ||
− | ==<FONT size="5" COLOR=indigo>'' | + | ==<FONT size="5" COLOR=indigo>''Проблемные вопросы''</FONT>== |
1. Почему солнце, воздух и вода – наши лучшие друзья ? | 1. Почему солнце, воздух и вода – наши лучшие друзья ? | ||
Строка 51: | Строка 55: | ||
==<FONT size="5" COLOR=indigo>''Цели проекта''</FONT>== | ==<FONT size="5" COLOR=indigo>''Цели проекта''</FONT>== | ||
− | + | 1. Познакомиться с историей развития электроэнергетики. | |
− | + | ||
− | + | 2. Узнать о возможных альтернативных источниках электроэнергии. | |
+ | |||
+ | 3. Изучить способы энергосбережения. | ||
==<FONT size="5" COLOR=indigo>''Задачи проекта''</FONT>== | ==<FONT size="5" COLOR=indigo>''Задачи проекта''</FONT>== | ||
− | 1. | + | 1. Ознакомиться с первыми изобретениями из области энергетики. |
− | 2. | + | 2. Доказать возможное получение электроэнергии альтернативными способами. |
− | 3. Применить на практике способы энергосбережения. | + | 3. Применить на практике способы энергосбережения. |
==<FONT size="5" COLOR=indigo>''Этапы создания проекта''</FONT>== | ==<FONT size="5" COLOR=indigo>''Этапы создания проекта''</FONT>== | ||
− | 1 | + | 1. Начинай взбираться вверх снизу (теоретический). |
− | 2 | + | 2. Дорого лишь то, что нелегко даётся (практический). |
− | 3 | + | 3. Белый свет не клином сошёлся (заключительный). |
==<FONT size="5" COLOR=indigo>''Использованные методы''</FONT>== | ==<FONT size="5" COLOR=indigo>''Использованные методы''</FONT>== | ||
− | ''Теоретические:''<br><font color=green> Поиск, анализ, | + | ''Теоретические:''<br><font color=green> Поиск, анализ, синтез информации.</font> |
− | ''Практические:''<br><font color=blue> Оформление проекта на сайте, используя текст, изображения, презентации; | + | ''Практические:''<br><font color=blue> Оформление проекта на сайте, используя текст, изображения, презентации; обработка информации; эксперименты.</font> |
Строка 83: | Строка 89: | ||
{| cellpadding="20" cellspacing="4" style="width: 70%; background-color:aquamarine;margin-left: auto; margin-right: auto" | {| cellpadding="20" cellspacing="4" style="width: 70%; background-color:aquamarine;margin-left: auto; margin-right: auto" | ||
| style="width: 10%; background-color: azure; CornflowerBlue: 4px solid CornflowerBlue; vertical-align: top; height: 60px;" | | | style="width: 10%; background-color: azure; CornflowerBlue: 4px solid CornflowerBlue; vertical-align: top; height: 60px;" | | ||
− | <FONT size="4" COLOR=blue> | + | <FONT size="4" COLOR=blue>''«Был мир земной кромешной тьмой окутан.''</FONT> |
− | <FONT size="4" COLOR=blue> | + | <FONT size="4" COLOR=blue>''Да будет свет! И вот явился Ньютон!''</FONT> |
− | <FONT size="4" COLOR=blue> | + | <FONT size="4" COLOR=blue>''Но сатана не долго ждал реванша:''</FONT> |
− | <FONT size="4" COLOR=blue> | + | <FONT size="4" COLOR=blue>''Пришел Эйнштейн и стало все, как раньше...».''</FONT> |
|} | |} | ||
− | |||
+ | [[Файл:Шалаш.png|240px|thumb|left|Использование огня]] | ||
− | + | Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Первым способом его получения, по-видимому, стал метод получения из произвольного источника нагревания, такого как молния. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д. Поэтому огню уделялось большое внимание в ряде мифологий. Но огонь не мог дать всего, что хотел взять человек... | |
− | Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д. Но | ||
Строка 111: | Строка 116: | ||
− | Для удовлетворения своих потребностей человек ищет новый источник энергии и им становится вода. Энергию воды в механическую энергию превращало водяное колесо. Водяные колеса широко использовались в период Античности и Средневековья, являясь своеобразной движущей силой развития промышленности в Европе. | + | |
+ | |||
+ | |||
+ | Для удовлетворения своих потребностей человек ищет новый источник энергии и им становится вода. Энергию воды в механическую энергию превращало водяное колесо, которое давало много преимуществ. Самое раннее водяное колесо в Европе происходит из Древней Греции, образцы зарегистрированы в работе [http://ru.wikipedia.org/wiki/Аполлоний_Пергский Аполлония Пергского ], 240 год до н.э. Водяные колеса широко использовались в период Античности и Средневековья, являясь своеобразной движущей силой развития промышленности в Европе: они помогали молоть зерно, пилить брёвна, ковать железо, дублить кожу, изготовлять бумагу. Её значение в жизни средневековых людей было очень велико. | ||
Строка 121: | Строка 129: | ||
− | Альтернативой водяному колесу была ветряная мельница. На протяжении всего Средневековья ветряные мельницы (наряду с водяными мельницами) были единственными машинами, которые использовало человечество. | + | |
+ | Альтернативой водяному колесу была ветряная мельница. Первое документальное свидетельство использования ветра для приведения механизма в действие принадлежит греческому изобретателю [http://ru.wikipedia.org/wiki/Герон_Александрийский Герону Александрийскому], 1-й век н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами. На протяжении всего Средневековья ветряные мельницы (наряду с водяными мельницами) были единственными машинами, которые использовало человечество. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей. Однако главной функцией ветряной мельницы была молка зерна. | ||
Строка 137: | Строка 146: | ||
− | Позже люди стали использовать паровые механизмы. | + | Позже люди стали использовать паровые механизмы. Первое известное устройство, приводимое в движение паром, было описано тем же [http://ru.wikipedia.org/wiki/Герон_Александрийский Героном Александрийским]. Первая паровая машина была создана лишь в середине XVII века испанским изобретателем [http://ru.wikipedia.org/wiki/Паровая_машина Херонимо Аянсом де Бомонт]. Огромный вклад в развитие паровых машин внес также английский кузнец [http://ru.wikipedia.org/wiki/Ньюкомен,_Томас Томас Ньюкомен ]. Неоценимый вклад внёс шотландский инженер [http://ru.wikipedia.org/wiki/Джеймс_Уатт Джеймс Уатт]. Механизмы созданные этими изобретателями были очень удобны, однако их КПД был невелик. Дальнейшим повышением эффективности было применение пара высокого давления. Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Их применяли во всех отраслях производства: они широко использовались в промышленности, на транспорте и стали энергетической основой промышленной революции XIX века. |
Строка 144: | Строка 153: | ||
+ | |||
+ | |||
+ | В XIX веке начинает зарождаться электроэнергетика. Само явление электричества открыл греческий философ [http://ru.wikipedia.org/wiki/Фалес_Милетский Фалес]. Первую теорию электричества создает американец [http://ru.wikipedia.org/wiki/Франклин,_Бенджамин Бенджамин Франклин], который рассматривает электричество как «нематериальную жидкость». Далее, в 1791 году, итальянец [http://ru.wikipedia.org/wiki/Гальвани,_Луиджи Луиджи Гальвани] публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец [http://ru.wikipedia.org/wiki/Вольта,_Алессандро Вольта] в 1800 году изобретает первый источник постоянного тока — гальванический элемент. После этих экспериментов электричеством заинтересовываются другие учёные, такие как [http://ru.wikipedia.org/wiki/Кулон,_Шарль_Огюстен Кулон], [http://ru.wikipedia.org/wiki/Ампер,_Андре_Мари Ампер], [http://ru.wikipedia.org/wiki/Герц,_Генрих_Рудольф Герц], [http://ru.wikipedia.org/wiki/Фарадей,_Майкл Фарадей], [http://ru.wikipedia.org/wiki/Эрстед,_Ганс_Христиан Эрстед], [http://ru.wikipedia.org/wiki/Ом,_Георг_Симон Oм] и делают другие очень важные открытия. Неоценимый вклад в познание свойств электричества вложил знаменитый экспериментатор [http://ru.wikipedia.org/wiki/Никола_Тесла Никола Тесла]. Создание надёжных источников тока сделало возможным удовлетворение возросших потребностей в электрической энергии для практических целей. Идея применения электрической энергии для освещения была высказана [http://ru.wikipedia.org/wiki/Петров,_Василий_Владимирович Василием Петровым] в 1802. Уже в 1880-ом [http://ru.wikipedia.org/wiki/Эдисон,_Томас_Алва Томас Эдисон] начал выпуск безопасных лампочек. Начало применению электроэнергии для технологических целей положили работы [http://ru.wikipedia.org/wiki/Борис_Якоби Бориса Якоби] с 1838. Развитие электроэнергетики связано с массовым распространением электрического освещения, которое завершилось уже к середине XX века в большинстве развитых стран. Но запрос на электричество с каждым годом колоссально растёт. | ||
− | |||
Строка 154: | Строка 165: | ||
+ | <font size="3" >''На сегодняшний день ежедневное мировое потребление энергоресурсов на нужды транспорта, электроэнергетики, сельского хозяйства, промышленности, отопления и на другие потребности человечества представляет из себя очень большие числа. С учетом прогнозируемого экономического роста и увеличения численности населения, ожидается, что к 2030 г. общий мировой спрос на энергию '''увеличится''' приблизительно '''на 35%''', несмотря на значительное повышение эффективности использования энергии.'' </FONT> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==<FONT size="5" COLOR=light blue>'''''Этап 2. Дорого лишь то, что нелегко даётся'''''</FONT>== | ||
+ | |||
+ | |||
+ | {| cellpadding="20" cellspacing="4" style="width: 70%; background-color:aquamarine;margin-left: auto; margin-right: auto" | ||
+ | | style="width: 10%; background-color: azure; CornflowerBlue: 4px solid CornflowerBlue; vertical-align: top; height: 60px;" | | ||
+ | <font size="3" COLOR=blue>Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Все вокруг вращается, движется — все энергия. Перед нами грандиозная задача — найти способы добычи этой энергии. Тогда, извлекая ее из этого неисчерпаемого источника, человечество будет продвигаться вперед гигантскими шагами.</FONT> | ||
+ | <p align=right>'''''Никола Тесла'''''</p> | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | Один из способов обеспечить электричеством следующие поколения - найти новые источники энергии. Сегодня учёные сумели извлечь энергию почти из всего. Каждый источник энергии обладает определенными достоинствами и недостатками. Перечислим основные источники энергии: | ||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | <FONT size="4" COLOR=red>Энергия огня</FONT> | ||
+ | |||
+ | |||
+ | [http://ru.wikipedia.org/wiki/Солнце Солнце] - центр нашей системы из 8 планет, является первичным и главным источником энергии в нашей системе планет. Являясь большим термоядерным реактором, выделяющим громадное количество энергии, оно согревает Землю, приводит в движение и верхние слои атмосферы, океанские течения и реки. Благодаря совместному труду Солнца, воды и воздуха, за миллионы лет, на 3емле накоплены запасы углеводородов - угля, нефти, газа и пр., которые мы сейчас активно расходуем. Для удовлетворения потребностей человечества в энергоресурсах, на сегодняшний день, требуется сжечь около десяти миллиардов тонн углеводородного топлива в год. Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики. Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Сама солнечная энергия является восполняемой, и поэтому очень перспективной в сфере добычи энергии. | ||
+ | |||
+ | [[Файл: Solnbat.jpg| 320px | thumb | right | Солнечные батареи]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Экологичность | ||
+ | * Минимальное обслуживание | ||
+ | * Длительный срок службы | ||
+ | |||
+ | Минусы: | ||
+ | * Дорогое оборудование | ||
+ | * Низкое КПД | ||
+ | * Зависимость от времени суток | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Солнечные батареи в среднем добывают лишь 1% от всей электроэнергии в России. | ||
+ | ---- | ||
+ | |||
+ | |||
+ | <FONT size="4" COLOR=blue>Энергия воды</FONT> | ||
+ | |||
+ | [http://ru.wikipedia.org/wiki/Вода Вода] – источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека. | ||
+ | Согласно результатам исследований [http://ru.wikipedia.org/wiki/NASA NASA] из мирового океана можно получать 91000 ТВч энергии в год. | ||
+ | Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается: | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | 1) <font size="3" >''Энергия приливов/отливов''</FONT> | ||
+ | |||
+ | Вообще само явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как [http://ru.wikipedia.org/wiki/Луна Луна] или [http://ru.wikipedia.org/wiki/Солнце Солнце], действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации. | ||
+ | [[Файл:Дадада.jpg|320px|thumb|left|Приливной генератор]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Экологичность | ||
+ | * Низкая себестоимость производства энергии | ||
+ | |||
+ | Минусы: | ||
+ | * Увеличение амплитуды приливов со стороны океана | ||
+ | * Изменение флоры и фауны биологической системы водоёмов | ||
+ | * Высокая стоимость строительства | ||
+ | * Может работать только в составе энергосистемы | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Приливные электростанции также в среднем добывают лишь 1% от всей электроэнергии в России. | ||
+ | |||
+ | |||
+ | 2) <font size="3" >''Энергия морских волн''</FONT> | ||
+ | |||
+ | Данный вид энергии обладает довольно высокой удельной мощностью(приблизительная мощность волнения океанов достигает '''15 кВт/м'''). Мощность этого вида добычи энергии напрямую зависит от высоты волны. На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок (таких как сложные условия эксплуатации и непредсказуемость поведения волн). Пока эта сфера находится только на стадии экспериментальных исследований. | ||
+ | [[Файл:Омномном.jpg|400px|thumb|right|Волновой генератор]] | ||
+ | |||
+ | |||
+ | |||
+ | Плюсы: | ||
+ | * Защита портов, гаваней и берега от волн | ||
+ | * Уменьшение воздействия волн на стенках причалов, опорах мостов. | ||
+ | |||
+ | Минусы: | ||
+ | * Вытеснение рыбаков из продуктивных рыбопромышленных районов и представление опасности для безопасного плавания. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Волновые электростанции находятся пока лишь на стадии разработки. | ||
+ | |||
+ | |||
+ | 2) <font size="3" >''Энергия падающей воды''</FONT> | ||
+ | |||
+ | А этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Разумеется создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему. | ||
+ | [[Файл:Гидроэнергия.jpg|320px|thumb|left|Генераторы ГЭС]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Для получения электроэнергии не нужно топливо | ||
+ | * Нет выбросов в атмосферу | ||
+ | * Простота в обслуживании и эксплуатации | ||
+ | |||
+ | Минусы: | ||
+ | * Дорогое оборудование | ||
+ | * При перекрытии рек затапливаются огромные территории | ||
+ | * Непригодность многих рек и водоёмов | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | На гидроэлектростанциях добывается 22% от всей добываемой электроэнергии России. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <FONT size="4" COLOR=brown>Энергия земли</FONT> | ||
+ | |||
+ | Планета [http://ru.wikipedia.org/wiki/Земля Земля]. Мать всего живого и неживого. Для выживания человеку необходима энергия. И он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубая леса и т.д. Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию. | ||
+ | |||
+ | Приблизительная температура земного ядра '''5000 С''', а давление там достигает '''361 ГПа'''! Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Как будто внутри Земли работает природная атомная станция. Ядро разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину. В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Зато уже сегодня мы можем использовать тепло приповерхностных слоев, температура которых конечно же не сравнима с тысячами градусов, но вполне достаточна для выгодного ее использования. | ||
+ | |||
+ | [[Файл:15.jpg |350px|thumb|right|Гетеротермальные генераторы]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Низкая себестоимость | ||
+ | * Отсутствие загрязнения окружающей среды | ||
+ | * Фактическая неистощимость | ||
+ | |||
+ | Минусы: | ||
+ | * Содержание ядовитых веществ | ||
+ | * Загрязнение грунтовых вод | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Гетеротермальные генераторы не представляют выгоды для внедрении в России. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <FONT size="4" COLOR=CornflowerBlue>Энергия ветра</FONT> | ||
+ | |||
+ | |||
+ | Все большее распространение получают устройства, преобразующие энергию перемещающихся масс воздуха [http://ru.wikipedia.org/wiki/Ветер (ветра)] в электричество, так называемые ветряные электростанции. А создание первой ветряной мельницы, преобразующей ветер в электроэнергию, стало началом нового витка в истории современной энергетики - ветроэнергетики. Данная отрасль энергетики стала весьма перспективной, потому что ветер является возобновляемым источником энергии. Развитие ветроэнергетики идет очень активно: к 2008 году общая установленная мощность всех ветрогенераторов составила '''120 гигаватт'''! Поскольку мощность ветрогенератора зависит от площади лопасти генератора, имеется тенденция к увеличению их размеров, и эти сооружения мельницами никак не назовешь – теперь это турбины. К середине двадцатого века там было построено несколько сотен тысяч турбин. С течением времени ветряные фермы стали весьма распространенным во всём мире. | ||
+ | |||
+ | |||
+ | [[Файл:1107_bul_stat_359.jpg|370px|thumb|left| Ветряные генераторы]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Небольшая занимаемая площаль | ||
+ | * Экологичность | ||
+ | |||
+ | |||
+ | Минусы: | ||
+ | * Нестабильность ветра | ||
+ | * Создаваемый шум | ||
+ | * Помехи в радио и телевиденье | ||
+ | * Наносит существенный вред птицам и насекомым | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Ветряные генераторы находятся на стадии внедрения в России. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | <FONT size="4" COLOR=green>Биоэнергия</FONT> | ||
+ | |||
+ | |||
+ | [http://ru.wikipedia.org/wiki/Биотопливо Биоэнергия] – это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты. Ежегодно прирост биомассы на планете достигает '''130 млрд. тонн''' сухого вещества. Это соответствует '''660 000 ТВтч''' в год, при том, что мировой общественности требуется всего лишь '''15 000 ТВтч''' в год. | ||
+ | Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо. | ||
+ | Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. | ||
+ | |||
+ | [[Файл:Cbd507.jpg|370px|thumb|right|Биогенераторы]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Экологичность и доступность | ||
+ | * Возможность утилизации мусора | ||
+ | |||
+ | Минусы: | ||
+ | * Истощение плодородных земель | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Биогенераторы в ближайшем будущем уже начнут внедряться в России. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | <FONT size="4" COLOR=grey>Атомная энергия</FONT> | ||
+ | |||
+ | На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии. [http://ru.wikipedia.org/wiki/Ядерная_реакция Ядерная] теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1 килограмма урана, можно сравнить с энергией, которая получается при сжигании '''2 500 000 кг''' каменного угля. | ||
+ | |||
+ | Так как же получают эту энергию? Все дело в цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон – элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло. | ||
+ | |||
+ | [[Файл:Article-1260870-08E0FBF2000005DC-465_306x423.jpg|270px|thumb|left|Атомный реактор]] | ||
+ | |||
+ | Плюсы: | ||
+ | * Отсутствие вредных выбросов | ||
+ | * Выбросы радиоактивных веществ очень малы | ||
+ | * Небольшой объём используемого топлива | ||
+ | * Высокая мощность | ||
+ | * Низкая себестоимость энергии | ||
+ | |||
+ | Минусы: | ||
+ | * Проблема утилизации облучённого топлива не решена | ||
+ | * При низкой вероятности инцидентов, последствия их крайне тяжелы | ||
+ | * Высокая стоимость постройки и ликвидации станций | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | На атомных электростанциях России добывается 11% от всей добываемой энергии России. | ||
+ | |||
+ | |||
+ | |||
+ | <font size="3" >''Уже сейчас человек активно использует эти источники энергии. Доля АЭС в производстве электроэнергии равна 14%, доля других альтернативных источников энергии вместе взятых равна лишь 7%, однако с каждым годом этот процент растёт. С каждым годом учёные открывают новые источники энергии. Переход к их полноценному использованию - лишь вопрос времени.'' </FONT> | ||
+ | |||
+ | |||
+ | ==<FONT size="5" COLOR=light blue>'''''Этап 3. Белый свет не клином сошёлся'''''</FONT>== | ||
+ | |||
+ | {| cellpadding="20" cellspacing="4" style="width: 70%; background-color:aquamarine;margin-left: auto; margin-right: auto" | ||
+ | | style="width: 10%; background-color: azure; CornflowerBlue: 4px solid CornflowerBlue; vertical-align: top; height: 60px;" | | ||
+ | <font size="3" COLOR=blue>Поздно быть бережливым, когда все растрачено.<p align=right>'''''Сенека'''''</p> | ||
+ | |} | ||
+ | |||
+ | Другой способ обеспечить электричеством следующие поколения - экономить имеющиеся источники энергии. К сожалению люди не берегут энергию, часто тратя большое её количество без нужды. Поэтому мы решили провести эксперимент по способам экономии энергии. Мы предлагаем следующие способы энергосбережения, которыми может воспользоваться каждый: | ||
+ | |||
+ | <font size="3" >Способы энергосбережения:</FONT> | ||
+ | |||
+ | *Рациональное использование электроприборов: | ||
+ | |||
+ | Использование энергосберегающих устройств | ||
+ | |||
+ | Статистка свидетельствует, что 50% сэкономленной электроэнергии - это экономия за счет освещения. Сэкономить на освещении можно разными способами. | ||
+ | |||
+ | Возьмём в пример Энергосберегающие лампы: | ||
+ | |||
+ | |||
+ | Они имеют очевидные достоинства: | ||
+ | |||
+ | 1.Энергосберегающие лампы требуют в пять раз меньше электроэнергии, чем лампы накаливания, уровень освещенности помещения не изменяется; | ||
+ | |||
+ | 2.Служат энергосберегающие лампы в несколько раз (в 6-15) гораздо дольше, чем обычные лампы; | ||
+ | |||
+ | 3.Энергосберегающие лампы можно использовать в светильниках, где есть ограничения температуры, так как эти лампы практически не нагреваются; | ||
+ | |||
+ | 4.Энергосберегающие лампы характеризуются гораздо большей площадью поверхности, чем обычные лампы, а это значит, что равномерность распределения света по помещению, исходящего от энергосберегающей лампы, будет больше. А равномерное распределение света значительно уменьшает утомляемость органов зрения. | ||
+ | |||
+ | |||
+ | Использование энергоемких приборов должно быть очень экономным. Человек не должен оставлять включенным телевизор, компьютер, радио, если нет нужды. | ||
+ | Некоторые приборы, такие как утюг, при неправильном использовании тратят много энергии. | ||
+ | |||
+ | |||
+ | [[Файл: АБВ.jpg|350px|thumb|right|Проветривания квартиры]] | ||
+ | *Сбережение тепла; | ||
+ | |||
+ | Многие используют электрообогреватели в зимнее время года, непродолжительная работа обогревателя может «съесть» всю сэкономленную электроэнергию. Но поддерживать нормальную температуру и ,как следствие, экономить электроэнергию можно более простыми способами: | ||
+ | |||
+ | |||
+ | Полное проветривание в течении 2 минут каждые 3-4 часа сохраняет намного больше тепла, чем постоянное частичное проветривание. Зимой достаточно 2-3 минут полного проветривания. Весной и осенью – до 15 минут | ||
+ | |||
+ | '''Окна''' | ||
+ | |||
+ | Более радикальным способом снижения теплопотерь является установка окон с одно- или многокамерным вакуумным стеклопакетом. Современные металлопластиковые или деревянные окна обладают хорошими звуко- и теплоизолирующими свойствами. В отличие от обычных «советских» окон, стеклопакеты пропускают тепло только в инфракрасном диапазоне, поскольку между слоями стекла нет воздуха. Теплопотери правильно установленного оконного блока ниже в 6-7 раз по сравнению с традиционным. Их дополнительная тепловая изоляция или замена на современные стеклопакеты может повысить температуру в помещении на 4-5 °С. | ||
+ | |||
+ | '''Балкон''' | ||
+ | |||
+ | Застекленный балкон способствует повышению температуры внутри помещения на 1-2 градуса. | ||
+ | |||
+ | '''Пол''' | ||
+ | |||
+ | Бетонные полы покрытые ПХВ плиткой, линолеумом или ламинатом можно покрыть ковровым покрытием. Температуру воздуха в помещении это не поднимет, но физиологический эффект "тепла" обеспечит. | ||
+ | |||
+ | '''Двери''' | ||
+ | |||
+ | Чтобы в квартире было по настоящему тепло, следует утеплить входную дверь или поставить двойные двери. Щели между входной дверью и косяками лучше уплотнить самоклеющими резиновыми трубчатыми уплотнителями.Особое внимание уделите уплотнению балконных дверей. Для того, чтобы выбрать профиль уплотнителя, определите размер зазора. С этой целью положите в зазор окна или двери через целлофан кусочек пластилина и измерьте толщину сжатого пластилина.Не экономьте на качестве уплотнителя.Уплотнив двери, Вы сможете повысить температуру в помещении на 1-2°С, и кроме этого обеспечите задержание пыли, выхлопных газов и снижение внешнего шума. | ||
+ | |||
+ | |||
+ | Способы экономии энергии в быту: | ||
+ | |||
+ | 1. Не выбрасывайте деньги в окно. Окно, часами остающееся приоткрытым, не обеспечит Вам приток свежего воздуха, но большой счет за отопление оно обеспечит наверняка. Лучше проветривать чаще, но при этом открывать окно широко и всего на несколько минут. | ||
+ | |||
+ | 2.Не преграждайте путь теплу. Не облицованные батареи отопления не всегда красивы на вид, зато это гарантия дополнительных 5-10% тепла. | ||
+ | |||
+ | 3.Длинные шторы, радиаторные экраны, неудачно расставленная мебель, стойки для сушки белья перед батареями могут поглотить до 20 % тепла. | ||
+ | |||
+ | 4.Не выпускайте тепло. На ночь опускайте жалюзи, закрывайте шторы, чтобы уменьшить теплопотери через окна. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <font size="3" >Эксперимент</FONT> | ||
+ | |||
+ | Мы провели эксперимент с помощью которого доказали, что при использовании энергосберегающих ламп можно существенно снизить расходы бюджета семьи. Для эксперимента мы взяли собственные квартиры, площади и проекты которых, одинаковы. В одной квартире все лампочки накаливания были заменены на энергосберегающее, и жители этой квартиры старались более рационально использовать электроприборы (выключать на ночь из режима ожидания, не наливать полный чайник и т.д.). В другой все оставалось по-прежнему. И вот что из этого получилось! | ||
+ | |||
+ | |||
+ | С экономией энергии: | ||
+ | {|class="standard" border=1 | ||
+ | |-style="background-color:#FFDEAD" | ||
+ | |'''Месяц'''||'''Расход'''||'''Начисление''' | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Октябрь||337 || 353,85 | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Ноябрь||342 ||359,1 | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Декабрь||378 ||396,9 | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | |||
+ | Без экономии энергии: | ||
+ | {|class="standard" border=1 | ||
+ | |-style="background-color:#FFDEAD" | ||
+ | |'''Месяц'''||'''Расход'''||'''Начисление''' | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Октябрь||432 || 453,6 | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Ноябрь||456 ||478,8 | ||
+ | |- | ||
+ | |--style="background-color:#FFF8DC" | ||
+ | |Декабрь||498 ||522,9 | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | |||
+ | Мы решили рассчитать какую экономию ресурсов можно получить при использовании энергосберегающих ламп. | ||
+ | |||
+ | Итак : Q=mg - формула для расчета энергии топлива. | ||
+ | |||
+ | A=Pt - формула для расчета работы электрического тока. | ||
+ | |||
+ | P - мощность сэкономленная на замене ламп. | ||
+ | |||
+ | t - время использования за год. | ||
+ | |||
+ | Численное значение сэкономленной работы нам известно из ранее полученных расчетов(4609843200 Вт*с). | ||
+ | |||
+ | Поскольку Q=A | ||
+ | |||
+ | mg=A | ||
+ | |||
+ | m=A/g (где g= 44000000 Дж/кг - из таблицы) | ||
+ | |||
+ | m= 4609843200 Вт*с / 44000000 Дж/кг = 104,76 кг = 105 кг | ||
+ | |||
+ | Вот такую экономию газа дает только одна наша школа за год! А школ в городе 46, плюс другие объекты, включая промышленные и бытовые. | ||
+ | |||
+ | Так стоит ли игра свеч? | ||
+ | |||
+ | '''Ответ однозначен - да!''' Сжигание такого количества газа обеспечит обычную квартиру бесплатной электроэнергией в течение трех месяцев | ||
+ | |||
+ | Что это даёт? | ||
+ | |||
+ | * Экономия природных ресурсов. | ||
+ | * Улучшение экологии, вследствие уменьшения выбросов побочных продуктов горения газа . | ||
+ | * Улучшение состояния здоровья жителей крупных городов, испытывающих на себе отрицательное воздействие от побочных продуктов горения газа. | ||
+ | * Освобождение трудовых ресурсов, которые могут быть заняты в интеллектуальной сфере деятельности. | ||
+ | * Уменьшение материальных затрат на производство электроэнергии. | ||
+ | |||
+ | Однажды прогуливаясь, мы задумались, сможем ли мы сами при помощи подручных средств собрать ветрогенератор. | ||
+ | |||
+ | [[Файл: Аро.jpg|200px|thumb|left|С начало мы взяли банку]] | ||
+ | [[Файл: Ыва.jpg|200px|thumb|left|Разрезали на три равные части]] | ||
+ | [[Файл: Конр.jpg|200px|thumb|left|Взяли старые лопасти]] | ||
+ | [[Файл: Ываау.jpg|200px|thumb|left|Площади лопастей мы увеличили при помощи частей бутылки]] | ||
+ | [[Файл: Укп.jpg|200px|thumb|left|Далее мы подсоединили лопасти к трансформатору]] | ||
+ | [[Файл: Фкпвс.jpg|200px|thumb|left|А трансформатор подсоединили к аккумулятору]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Пропеллер стал основой, а бутылки пошли на увеличение площади лопастей. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Электродвигатель на постоянных магнитах стал отличной заменой генератора, ведь это первая только первая попытка. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Транзистор , диод и трансформатор помогут сгладить колебания напряжения. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | А аккумулятор будет скапливать заряд. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Ну вот все генератор готов, осталось рассчитать мощность. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Количество доступной ветровой энергии зависит от двух причин: от скорости ветра и от площади лопастей турбины. | ||
+ | Доступная энергия ветра = 1/2 * плотность воздуха * площадь лопастей * скорость ветра. | ||
+ | Потенциальная мощность ветрогенератора с площадью лопастей 0.525 м2 и средней скоростью ветра 4м/с будет равна 30 Вт. Но невозможно преобразовать всю энергию ветра в механическую ,кроме этого существует кпд генератора. КПД «хорошей» ветроустановки составляет 35%, нашей составил около 15%. Средняя мощность получившейся ветроустановки при 4м/с – 3 Вт.. | ||
− | |||
+ | <font size="3" >''Использование энергосберегающих приборов и просто внимательное отношение к работающим электроприборам позволило существенно сократить энергопотребление и сэкономить.'' </FONT> | ||
− | |||
− | |||
− | |||
− | |||
+ | ==<FONT size="6" COLOR=#007BA7>'''''Общие выводы по проекту'''''</FONT>== | ||
− | |||
''Наша жизнь держится на трех «китах»: это энергия, материя и информация. Уберем одного из них, и жизнь станет невозможной.'' | ''Наша жизнь держится на трех «китах»: это энергия, материя и информация. Уберем одного из них, и жизнь станет невозможной.'' | ||
− | Что рождает '''жизнь'''? Жизнь рождает энергия, и мы это доказали. Развитие и существование жизни без энергии | + | Что рождает '''жизнь'''? Жизнь рождает энергия, и мы это доказали. Развитие и существование жизни без энергии невозможно. Долго ли будет существовать наша цивилизация? Во многом это завит от нашего отношения к потреблению энергии. |
+ | |||
+ | Однако наше государство тоже обеспокоено энергозатратами, поэтому оно ввело закон [http://www.energosovet.ru/fzakon.html № 261-ФЗ] «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». | ||
+ | |||
==<FONT size="5" COLOR=indigo>''Прикладное значение проекта''</FONT>== | ==<FONT size="5" COLOR=indigo>''Прикладное значение проекта''</FONT>== | ||
− | + | 1. Проект предназначен для пополнения коллекции школьных цифровых образовательных ресурсов. | |
− | + | 2. Проект представлялся 27.04.2013 в рамках Дня открытых дверей "Современным детям - современное образование". | |
+ | |||
+ | 3. Проект представлялся 30.04.2013 в рамках научной конференции. | ||
Строка 188: | Строка 739: | ||
<br><font size="4" color=gray>'''Интернет – Источники:'''</font> | <br><font size="4" color=gray>'''Интернет – Источники:'''</font> | ||
− | http://russia-energy.ru | + | 1. http://www.russia-energy.ru - информационный портал о малой энергетике |
− | http://ru.wikipedia.org | + | 2. http://ru.wikipedia.org - свободная универсальная интернет-энциклопедия |
− | http://priroda.su | + | 3. http://www.priroda.su - сайт, посвящённый экологическим проблемам нашей планеты |
− | http://3dplanet.ru | + | 4. http://www.3dplanet.ru - познавательный научный портал |
− | http://eprussia.ru | + | 5. http://www.eprussia.ru - портал, посвящённый промышленности и энергетике |
+ | |||
+ | 6. http://www.energy-source.ru - информационный портал о альтернативных источниках энергии | ||
− | |||
− | |||
<br><font size="4" color=gray>'''Библиографические источники:'''</font> | <br><font size="4" color=gray>'''Библиографические источники:'''</font> | ||
+ | |||
+ | 1. Германович Б., Турилин А. Альтернативные источники энергии: Энциклопедия. | ||
+ | - М.: НиТ, 2011. - 320 с. | ||
+ | 2. Енохович А.С. Справочник по физике и технике: Учебное пособие для 9-11 классов. | ||
+ | - М.: Просвещение, 1976. - 288 с. | ||
− | + | 3. Кораблев В.П. Экономия электроэнергии в быту: Справочник. | |
− | + | - М.: Энергоатомиздат, 1987. - 96 с. | |
− | |||
− | |||
− | |||
− | |||
+ | 4. Майер В.В., Майер Р.В. Электричество: учебные экспериментальные доказательства: Учебное пособие для 7-9 классов. | ||
+ | - М.: Физматлит, 2006. - 232 с. | ||
− | + | 5. Сибикин Ю. Д., Сибикин М. Ю. Нетрадиционные и возобновляемые источники энергии: Энциклопедия. | |
+ | - М.: РадиоСофт, 2008. - 228 с. | ||
− | + | 6. Сибикин Ю. Д., Сибикин М. Ю. Технология энергосбережения: Справочник. | |
− | + | – М: Форум, 2010. – 352 с. | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | 7. Соловьев А.С., Козярук А.Е. История развития электроэнергетики и электромеханики: Доп. материалы для внешкольного чтения. | ||
+ | - СПб: ГосЭнергоИздат, 2000. - 105 с. | ||
|} | |} | ||
Строка 228: | Строка 780: | ||
− | + | [[Категория:Проектный конкурс Отчизна Дон Кихотов]] | |
− | + | [[Категория:Конкурсы]] | |
− | + | [[Категория:Ученик]] | |
− | + | [[Категория:СОШ №1]] | |
− | + | [[Категория:энергетика]] | |
+ | [[Категория:будущее]] |
Текущая версия на 00:33, 7 августа 2013
Содержание
Авторы проектаЗиганшин Раис, Зверев Иван , ученики 9В класса
Руководитель проектаГромова Светлана Фёдоровна , учитель информатики
АктуальностьВыживание современного человека напрямую зависит от того, как он будет использовать имеющиеся природные ресурсы. Если человек в ближайшее время не найдет альтернативные источники энергии, а также будет небрежно использовать уже имеющиеся, то его судьба будет плачевной.
Объект исследованияПриродные источники энергии
Предмет исследованияЭнергосбережение, альтернативные источники энергии
ГипотезаНеправильное, неэкономное использование природных (энергетических) ресурсов человеком приведёт к их истощению. А истощение топлива приведёт к экологическому коллапсу...
Основополагающий вопросЧто рождает жизнь?
Проблемные вопросы1. Почему солнце, воздух и вода – наши лучшие друзья ? 2. Как укротить стихии? 3. Как посредством меньшего получить большее?
Цели проекта1. Познакомиться с историей развития электроэнергетики. 2. Узнать о возможных альтернативных источниках электроэнергии. 3. Изучить способы энергосбережения.
Задачи проекта1. Ознакомиться с первыми изобретениями из области энергетики. 2. Доказать возможное получение электроэнергии альтернативными способами. 3. Применить на практике способы энергосбережения.
Этапы создания проекта1. Начинай взбираться вверх снизу (теоретический). 2. Дорого лишь то, что нелегко даётся (практический). 3. Белый свет не клином сошёлся (заключительный).
Использованные методыТеоретические: Практические:
Этап 1. Начинай взбираться вверх снизу
Для удовлетворения своих потребностей человек ищет новый источник энергии и им становится вода. Энергию воды в механическую энергию превращало водяное колесо, которое давало много преимуществ. Самое раннее водяное колесо в Европе происходит из Древней Греции, образцы зарегистрированы в работе Аполлония Пергского , 240 год до н.э. Водяные колеса широко использовались в период Античности и Средневековья, являясь своеобразной движущей силой развития промышленности в Европе: они помогали молоть зерно, пилить брёвна, ковать железо, дублить кожу, изготовлять бумагу. Её значение в жизни средневековых людей было очень велико.
Альтернативой водяному колесу была ветряная мельница. Первое документальное свидетельство использования ветра для приведения механизма в действие принадлежит греческому изобретателю Герону Александрийскому, 1-й век н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами. На протяжении всего Средневековья ветряные мельницы (наряду с водяными мельницами) были единственными машинами, которые использовало человечество. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей. Однако главной функцией ветряной мельницы была молка зерна.
Позже люди стали использовать паровые механизмы. Первое известное устройство, приводимое в движение паром, было описано тем же Героном Александрийским. Первая паровая машина была создана лишь в середине XVII века испанским изобретателем Херонимо Аянсом де Бомонт. Огромный вклад в развитие паровых машин внес также английский кузнец Томас Ньюкомен . Неоценимый вклад внёс шотландский инженер Джеймс Уатт. Механизмы созданные этими изобретателями были очень удобны, однако их КПД был невелик. Дальнейшим повышением эффективности было применение пара высокого давления. Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Их применяли во всех отраслях производства: они широко использовались в промышленности, на транспорте и стали энергетической основой промышленной революции XIX века.
На сегодняшний день ежедневное мировое потребление энергоресурсов на нужды транспорта, электроэнергетики, сельского хозяйства, промышленности, отопления и на другие потребности человечества представляет из себя очень большие числа. С учетом прогнозируемого экономического роста и увеличения численности населения, ожидается, что к 2030 г. общий мировой спрос на энергию увеличится приблизительно на 35%, несмотря на значительное повышение эффективности использования энергии.
Этап 2. Дорого лишь то, что нелегко даётся
Один из способов обеспечить электричеством следующие поколения - найти новые источники энергии. Сегодня учёные сумели извлечь энергию почти из всего. Каждый источник энергии обладает определенными достоинствами и недостатками. Перечислим основные источники энергии:
Энергия огня
Плюсы:
Минусы:
Вода – источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека. Согласно результатам исследований NASA из мирового океана можно получать 91000 ТВч энергии в год. Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:
Вообще само явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации. Плюсы:
Минусы:
Данный вид энергии обладает довольно высокой удельной мощностью(приблизительная мощность волнения океанов достигает 15 кВт/м). Мощность этого вида добычи энергии напрямую зависит от высоты волны. На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок (таких как сложные условия эксплуатации и непредсказуемость поведения волн). Пока эта сфера находится только на стадии экспериментальных исследований.
Плюсы:
Минусы:
А этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Разумеется создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему. Плюсы:
Минусы:
Планета Земля. Мать всего живого и неживого. Для выживания человеку необходима энергия. И он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубая леса и т.д. Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию. Приблизительная температура земного ядра 5000 С, а давление там достигает 361 ГПа! Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Как будто внутри Земли работает природная атомная станция. Ядро разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину. В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Зато уже сегодня мы можем использовать тепло приповерхностных слоев, температура которых конечно же не сравнима с тысячами градусов, но вполне достаточна для выгодного ее использования. Плюсы:
Минусы:
Плюсы:
Плюсы:
Минусы:
Биогенераторы в ближайшем будущем уже начнут внедряться в России. Атомная энергия На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии. Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1 килограмма урана, можно сравнить с энергией, которая получается при сжигании 2 500 000 кг каменного угля. Так как же получают эту энергию? Все дело в цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон – элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло. Плюсы:
Минусы:
На атомных электростанциях России добывается 11% от всей добываемой энергии России.
Уже сейчас человек активно использует эти источники энергии. Доля АЭС в производстве электроэнергии равна 14%, доля других альтернативных источников энергии вместе взятых равна лишь 7%, однако с каждым годом этот процент растёт. С каждым годом учёные открывают новые источники энергии. Переход к их полноценному использованию - лишь вопрос времени.
Этап 3. Белый свет не клином сошёлся
Другой способ обеспечить электричеством следующие поколения - экономить имеющиеся источники энергии. К сожалению люди не берегут энергию, часто тратя большое её количество без нужды. Поэтому мы решили провести эксперимент по способам экономии энергии. Мы предлагаем следующие способы энергосбережения, которыми может воспользоваться каждый: Способы энергосбережения:
Использование энергосберегающих устройств Статистка свидетельствует, что 50% сэкономленной электроэнергии - это экономия за счет освещения. Сэкономить на освещении можно разными способами. Возьмём в пример Энергосберегающие лампы:
1.Энергосберегающие лампы требуют в пять раз меньше электроэнергии, чем лампы накаливания, уровень освещенности помещения не изменяется; 2.Служат энергосберегающие лампы в несколько раз (в 6-15) гораздо дольше, чем обычные лампы; 3.Энергосберегающие лампы можно использовать в светильниках, где есть ограничения температуры, так как эти лампы практически не нагреваются; 4.Энергосберегающие лампы характеризуются гораздо большей площадью поверхности, чем обычные лампы, а это значит, что равномерность распределения света по помещению, исходящего от энергосберегающей лампы, будет больше. А равномерное распределение света значительно уменьшает утомляемость органов зрения.
Многие используют электрообогреватели в зимнее время года, непродолжительная работа обогревателя может «съесть» всю сэкономленную электроэнергию. Но поддерживать нормальную температуру и ,как следствие, экономить электроэнергию можно более простыми способами:
Окна Более радикальным способом снижения теплопотерь является установка окон с одно- или многокамерным вакуумным стеклопакетом. Современные металлопластиковые или деревянные окна обладают хорошими звуко- и теплоизолирующими свойствами. В отличие от обычных «советских» окон, стеклопакеты пропускают тепло только в инфракрасном диапазоне, поскольку между слоями стекла нет воздуха. Теплопотери правильно установленного оконного блока ниже в 6-7 раз по сравнению с традиционным. Их дополнительная тепловая изоляция или замена на современные стеклопакеты может повысить температуру в помещении на 4-5 °С. Балкон Застекленный балкон способствует повышению температуры внутри помещения на 1-2 градуса. Пол Бетонные полы покрытые ПХВ плиткой, линолеумом или ламинатом можно покрыть ковровым покрытием. Температуру воздуха в помещении это не поднимет, но физиологический эффект "тепла" обеспечит. Двери Чтобы в квартире было по настоящему тепло, следует утеплить входную дверь или поставить двойные двери. Щели между входной дверью и косяками лучше уплотнить самоклеющими резиновыми трубчатыми уплотнителями.Особое внимание уделите уплотнению балконных дверей. Для того, чтобы выбрать профиль уплотнителя, определите размер зазора. С этой целью положите в зазор окна или двери через целлофан кусочек пластилина и измерьте толщину сжатого пластилина.Не экономьте на качестве уплотнителя.Уплотнив двери, Вы сможете повысить температуру в помещении на 1-2°С, и кроме этого обеспечите задержание пыли, выхлопных газов и снижение внешнего шума.
1. Не выбрасывайте деньги в окно. Окно, часами остающееся приоткрытым, не обеспечит Вам приток свежего воздуха, но большой счет за отопление оно обеспечит наверняка. Лучше проветривать чаще, но при этом открывать окно широко и всего на несколько минут. 2.Не преграждайте путь теплу. Не облицованные батареи отопления не всегда красивы на вид, зато это гарантия дополнительных 5-10% тепла. 3.Длинные шторы, радиаторные экраны, неудачно расставленная мебель, стойки для сушки белья перед батареями могут поглотить до 20 % тепла. 4.Не выпускайте тепло. На ночь опускайте жалюзи, закрывайте шторы, чтобы уменьшить теплопотери через окна.
Эксперимент Мы провели эксперимент с помощью которого доказали, что при использовании энергосберегающих ламп можно существенно снизить расходы бюджета семьи. Для эксперимента мы взяли собственные квартиры, площади и проекты которых, одинаковы. В одной квартире все лампочки накаливания были заменены на энергосберегающее, и жители этой квартиры старались более рационально использовать электроприборы (выключать на ночь из режима ожидания, не наливать полный чайник и т.д.). В другой все оставалось по-прежнему. И вот что из этого получилось!
Итак : Q=mg - формула для расчета энергии топлива. A=Pt - формула для расчета работы электрического тока. P - мощность сэкономленная на замене ламп. t - время использования за год. Численное значение сэкономленной работы нам известно из ранее полученных расчетов(4609843200 Вт*с). Поскольку Q=A mg=A m=A/g (где g= 44000000 Дж/кг - из таблицы) m= 4609843200 Вт*с / 44000000 Дж/кг = 104,76 кг = 105 кг Вот такую экономию газа дает только одна наша школа за год! А школ в городе 46, плюс другие объекты, включая промышленные и бытовые. Так стоит ли игра свеч? Ответ однозначен - да! Сжигание такого количества газа обеспечит обычную квартиру бесплатной электроэнергией в течение трех месяцев Что это даёт?
Однажды прогуливаясь, мы задумались, сможем ли мы сами при помощи подручных средств собрать ветрогенератор.
Пропеллер стал основой, а бутылки пошли на увеличение площади лопастей.
Электродвигатель на постоянных магнитах стал отличной заменой генератора, ведь это первая только первая попытка.
Транзистор , диод и трансформатор помогут сгладить колебания напряжения.
Ну вот все генератор готов, осталось рассчитать мощность.
Использование энергосберегающих приборов и просто внимательное отношение к работающим электроприборам позволило существенно сократить энергопотребление и сэкономить.
Общие выводы по проектуНаша жизнь держится на трех «китах»: это энергия, материя и информация. Уберем одного из них, и жизнь станет невозможной. Что рождает жизнь? Жизнь рождает энергия, и мы это доказали. Развитие и существование жизни без энергии невозможно. Долго ли будет существовать наша цивилизация? Во многом это завит от нашего отношения к потреблению энергии. Однако наше государство тоже обеспокоено энергозатратами, поэтому оно ввело закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
Прикладное значение проекта1. Проект предназначен для пополнения коллекции школьных цифровых образовательных ресурсов. 2. Проект представлялся 27.04.2013 в рамках Дня открытых дверей "Современным детям - современное образование". 3. Проект представлялся 30.04.2013 в рамках научной конференции.
Использованная литература
1. http://www.russia-energy.ru - информационный портал о малой энергетике 2. http://ru.wikipedia.org - свободная универсальная интернет-энциклопедия 3. http://www.priroda.su - сайт, посвящённый экологическим проблемам нашей планеты 4. http://www.3dplanet.ru - познавательный научный портал 5. http://www.eprussia.ru - портал, посвящённый промышленности и энергетике 6. http://www.energy-source.ru - информационный портал о альтернативных источниках энергии
1. Германович Б., Турилин А. Альтернативные источники энергии: Энциклопедия. - М.: НиТ, 2011. - 320 с. 2. Енохович А.С. Справочник по физике и технике: Учебное пособие для 9-11 классов. - М.: Просвещение, 1976. - 288 с. 3. Кораблев В.П. Экономия электроэнергии в быту: Справочник. - М.: Энергоатомиздат, 1987. - 96 с. 4. Майер В.В., Майер Р.В. Электричество: учебные экспериментальные доказательства: Учебное пособие для 7-9 классов. - М.: Физматлит, 2006. - 232 с. 5. Сибикин Ю. Д., Сибикин М. Ю. Нетрадиционные и возобновляемые источники энергии: Энциклопедия. - М.: РадиоСофт, 2008. - 228 с. 6. Сибикин Ю. Д., Сибикин М. Ю. Технология энергосбережения: Справочник. – М: Форум, 2010. – 352 с. 7. Соловьев А.С., Козярук А.Е. История развития электроэнергетики и электромеханики: Доп. материалы для внешкольного чтения. - СПб: ГосЭнергоИздат, 2000. - 105 с. |