Участник:Nastasiya

Материал из SurWiki
Версия от 10:58, 6 марта 2013; Nastasiya (обсуждение | вклад) (Применение имитационного моделирования)
Перейти к навигации Перейти к поиску

Имитационное моделирование.

Имитационное моделирование (ситуационное моделирование) — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов[1].

Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Применение имитационного моделирования

К имитационному моделированию прибегают, когда: дорого или невозможно экспериментировать на реальном объекте; невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные; необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами — разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства[источник не указан 284 дня]. Компьютерное 3D-моделирование теперь не редкость даже для небольших компаний[источник не указан 284 дня].

Имитация как метод решения нетривиальных задач получила начальное развитие в связи с созданием ЭВМ в 1950-х — 1960-х годах. Можно выделить две разновидности имитации:

   *Метод Монте-Карло (метод статистических испытаний);
   *Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования

   Агентное моделирование — относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
   Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие, как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
   Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Области применения

   Бизнес-процессы
   Боевые действия
   Динамика населения
   Дорожное движение
   ИТ-инфраструктура
   Математическое моделирование исторических процессов
   Логистика
   Пешеходная динамика
   Производство
   Рынок и конкуренция
   Сервисные центры
   Цепочки поставок
   Уличное движение
   Управление проектами
   Экономика здравоохранения
   Экосистема
   Информационная безопасность

Свободные системы имитационного моделирования

   Scilab
   Maxima

Примечания

   ↑ Муха В. С. Вычислительные методы и компьютерная алгебра: учеб.-метод. пособие. — 2-е изд., испр. и доп. — Минск: БГУИР, 2010.- 148 с.: ил, ISBN 978-985-488-522-3, УДК 519.6 (075.8), ББК 22.19я73, М92

Литература

   Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. — 7-е изд. — М.: «Вильямс», 2007. — С. 697-737. — ISBN 0-13-032374-8
   Строгалев В. П., Толкачева И. О. Имитационное моделирование. — МГТУ им. Баумана, 2008. — С. 697-737. — ISBN 978-5-7038-3021-5

Ссылки

   Компьютерное и статическое имитационное моделирование на Интуит.ру
   Национальное общество имитационного моделирования
   Имитационное моделирование в задачах технологического инжиниринга Макаров В. М., Лукина С. В., Лебедь П. А.