Учебный проект Кристаллы

Материал из SurWiki
(перенаправлено с «КРАСТАЛЛЫ.ppt»)
Перейти к навигации Перейти к поиску

Цели: выяснить и показать , что кристалл, каким бы способом он не был получен, подчиняется закону симметрии.

Задачи: Приобретение обучающимися:  общеучебных умений: работать с научной литературой, проводить наблюдения, осуществлять самоконтроль и самоанализ.  специальных знаний и умений по данной теме проекта, умение ориентироваться в информационном пространстве, самостоятельно конструировать свои знания.  исследовательских знаний и умений: формулировать гипотезы, выделять проблемы, планировать эксперимент в соответствии с гипотезой, делать выводы. Оборудование и реактивы: весы, химическая посуда (стаканчики, воронки, колбы), штативы, проволока, фильтры, вода, соли ( алюмокалиевые квасцы, сернокислый никель, дихромат калия, медный купорос, нитрат алюминия).


                                                            Поколение нас, захлебнувшихся номером Икс
                                                           Промерявших часы на вселенских весах мирозданья…
                                                           Поколение знающих мерность безумных страниц
                                                           И не верящих в догмы, анафемы и предсказанья…
                                                           Налетают шторма букв и чисел, видений и снов
                                                           Детонируют руку, шлифуя-граня рану-душу
                                                           Преломляясь о грани КРИСТАЛЛА – основы ОСНОВ
                                                           Рассыпаясь осколками бликов, ликующей тушью
                                                           Но, по-волчьи, чутьём, 
                                                                            мы друг друга… «по звуку» и «в слог»…
                                                           Как «по запаху - влёт»… 
                                                                                и… готов соплеменник-подранок…
                                                          А на утро: «Пока! Приезжай!..
                                                            Вот те Бог, вот порог…
                                                           – Про КРИСТАЛЛ не забудь!..
                                                            – Про ВЕСЫ…
                                                           – Дожидаюсь ОГРАНОК…» 
                                                                                                          /Д. Блощинский/
                                                                                                                       

1.Актуализация

Кристалл ,как загадочная и прекрасная часть природы, издревле привлекал внимание людей. Кристалл обычно служит символом неживой природы. Однако грань между живым и неживым установить очень трудно, и понятие «кристалл» и «жизнь» не являются взаимоисключающими.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями.

Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все драгоценные природные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов.

Наиболее известные примеры кристаллов: лед, алмаз, кварц, каменная соль. Большинство твердых тел не обладает характерной для кристаллов правильной геометрической формой многогранника с плоскими гранями и острыми ребрами. Слово «кристалл» происходит от греческого – «лед».


                                            Мир кристаллов.

2.Вода – «универсальный» растворитель.

Вода - самый распространенный растворитель для твердых, жидких и газообразных веществ. Из повседневной жизни хорошо известно, что если некоторые вещества растворяются в воде, то при этом образуются растворы.

Растворами называются гомогенные однородные системы, содержащие два и больше веществ. Растворы могут быть не только жидкие, но и твердые, например, стекло, сплав серебра и золота. Известны также и газообразные растворы, например воздух. Наиболее важными и распространенными являются водные растворы.

Согласно современным представлениям растворение есть результат химического взаимодействия растворителя и растворенного вещества, при этом образуются молекулярные соединения. В водных растворах эти соединения называются гидратами, а в неводных - сольватами.

Насыщенным раствором называется такой раствор, который находится в равновесии с избытком растворяемого вещества. Он содержит максимально возможное количество растворенного вещества. Понятие «насыщенные растворы» следует отличать от понятия «концентрированные растворы». Концентрированным раствором называется раствор с высоким содержанием растворенного вещества. Если концентрация раствора не достигает концентрации насыщения при данных условиях, то раствор называется ненасыщенным. При осторожном охлаждении горячего насыщенного раствора (например, медного купороса или глауберовой соли) можно получить так называемые перенасыщенные растворы.

3. Кристаллы в природе.

                                     3.1. Кристаллы льда и снега.

Кристаллы замершей воды, т.е. лед и снег, известны всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах.

Ледяной покров реки, массив ледника или айсберга - это, конечно, не один большой кристалл. Плотная масса льда обычно поликристаллическая, т.е. состоит из множества отдельных кристаллов. Их не всегда различишь, потому что они мелки и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, в льдинках весеннего ледохода на реке. Тогда видно, что лед состоит как бы из «карандашиков», сросшихся вместе, как в сложенной пачке карандашей: шестигранные столбики параллельны друг другу и стоят торчком к поверхности воды; эти «карандашики» и есть кристаллики льда. Известно, как опасны для растений весенние или осенние заморозки. Температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются, чернеют, стебли и корни разрушаются. После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на земле вырастает «ледяная трава». Каждый стебелек такой травы - это прозрачный шестигранный кристаллик льда. Ледяные иголочки достигают длины в 1-2см, а иной раз доходят до 10-12см. Случается, что земля оказывается покрытой пластинками льда, стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки весом до 50-100г. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лед. Бывает и так, что щеточка ледяных иголок сообща поднимает тяжелый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная «ледяная трава», но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают. В морозное весеннее или осеннее утро, когда солнце еще не успело уничтожить следы ночных заморозков, деревья и кусты покрыты инеем. На ветках повисли капли льда. Вглядитесь: внутри ледяных капель видны пучки тонких шестигранных иголочек - кристалликов льда. Покрытые инеем листья кажутся щетками: как щетинки стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным нарядом украшен лес.

Каждый отдельный кристаллик льда, каждая снежинка хрупка и мала. На снежинках легче всего убедится в том, что форма кристаллов правильна и симметрична. Удивительно разнообразны формы звездочек-снежинок, но симметрия их всегда одинакова: только шесть лучей. Почему? Такова симметрия атомной структуры кристаллов снега. Это относится не только к снегу. Формы кристаллов могут быть весьма разнообразными, но симметрия этих форм для каждого вещества одна, ее определяет симметрия и закономерность атомного строения данного вещества. Снежинка может быть только шестилучевой - такова симметрия строения кристаллов снега.

 3.2Кристаллы в облаках

Кристаллики льда, причудливыми узорами которых мы любуемся в снежинках, могут в несколько минут погубить самолет. Обледенение - страшный враг самолетов - тоже результат роста кристаллов. Здесь мы имеем дело с ростом кристаллов из переохлажденных паров. В верхних слоях атмосферы водяные пары или капли воды могут долго сохраняться в переохлажденном состоянии. Переохлаждение в облаках доходит до -30˚C. Но как только в эти переохлажденные облака врывается летящий самолет, тотчас же начинается бурная кристаллизация. Мгновенно самолет оказывается облепленным грудой быстро растущих кристаллов льда.

 3.3Кристаллы в пещерах

Все природные воды - в океанах, морях, озерах, ручьях и подземных источниках - являются естественными растворами, все они растворяют встречающиеся им породы, и во всех этих растворах происходят сложные явления кристаллизации.

Особенно интересна кристаллизация подземных вод в пещерах. Капля за каплей просачиваются воды и падают со сводов пещеры вниз. Каждая капелька при этом частично испаряется и остается на потолке пещеры вещество, которое было в ней растворено. Так постепенно образуется на потолке пещеры маленький бугорок, вырастающий затем в сосульку. Эти сосульки сложены из кристалликов. Одна за другой капли мерно падают день за днем, год за годом, века за веками. Звук их падения глухо раздается под сводами. Сосульки все вытягиваются и вытягиваются, а навстречу им начинают расти вверх такие же длинные столбы сосулек со дна пещеры. Иногда сосульки, растущие сверху (сталактиты) и снизу (сталагмиты), встречаются, срастаются вместе и образуют колонны. Так возникают в подземных пещерах узорчатые, витые гирлянды, причудливые колоннады. Сказочно, необыкновенно красивы подземные чертоги, украшенные фантастическими нагромождениями сталактитов и сталагмитов, разделенные на арки решетками из сталактитов. В природе кристаллы неправильной формы встречаются несравненно чаще, чем правильные многогранники. В руслах рек из-за трения кристаллов о песок и камни углы кристаллов стираются, многогранные кристаллы превращаются в округлые камешки - гальку; от действия воды, ветра, морозов кристаллы растрескиваются, рассыпаются; в горных породах кристаллические зерна мешают друг другу расти и приобретать неправильные формы.

4. Методы выращивания кристаллов из растворов.

                         4.1.Кристаллизация с помощью «затравок».

Явление кристаллизации солей нетрудно воспроизвести на опыте. Растворите в воде щепотку простой поваренной соли и налейте соленую воду на блюдце. Когда вода испарится, посмотрите в лупу, и вы увидите, что на блюдце остались правильные белые с полосками гранями кубики кристаллов. Кристаллы каменной (поваренной) соли образовались из раствора на ваших глазах. Так в миниатюре, можно наблюдать явление кристаллизации раствора, которое в природе, в соленых озерах и в подпочвенных водах, происходит в гигантских масштабах.

Почему же кристаллы выделяются из раствора? Чтобы понять это, следует познакомиться с некоторыми свойствами растворов.

Попробуйте растворять в воде столовую соль: в граненом стакане воды растворится 70 граммов соли, а если вы будете сыпать соль дальше, она перестанет растворяться и будет оседать на дно. То же самое вы увидите с сахаром: в стакане с холодной воды растворится примерно двадцать чайных ложек сахарного песка, а затем сахар тоже будет оседать на дно, не растворяясь. В 100 граммах холодной воды может раствориться только совершенно определенное количество сахара (194 грамма), поваренной соли (35 граммов) или любого другого вещества. Количество вещества, которое может раствориться в 100 граммах воды, называется растворимостью этого вещества в воде; например, растворимость поваренной соли в воде при комнатной температуре равна 35 граммам. Растворимость зависит от температуры. Попробуйте растворить сахар не в холодной воде, а в горячей, и вы убедитесь что при повышении температуры растворимость сахара увеличивается. У разных веществ растворимость по-разному зависит от температуры. Итак, при каждой данной температуре в воде может раствориться лишь строго ограниченное количество вещества, определяемое его растворимостью.

Возьмите стакан горячей воды и всыпьте любое кристаллическое вещество, растворимое в воде: гипосульфит, соду, борную кислоту, квасцы. Если вы достанете крупные кристаллы, то сначала растолките их в порошок. В стакан горячей воды всыпьте столько порошка, сколько может раствориться. Когда порошок совсем перестанет растворяться и начнет оседать на дно, слейте образовавшийся раствор в другой стакан так, чтобы на дно стакана с раствором не попало ни одной крупинки порошка. Для этого профильтруйте раствор через фильтрованную бумагу или через чистую тряпочку. В получившемся растворе количество вещества как раз соответствует его растворимости при данной температуре; раствор «насытился», и больше он не может поглотить ни крупинки вещества. Такой раствор называется насыщенным. Теперь оставьте стакан с раствором и дайте ему остыть. При остывании растворимость почти всех веществ уменьшается; пока наш раствор был горячим, в стакане воды было растворено, скажем, 12 ложек вещества, тогда как при комнатной температуре в нем могло бы раствориться лишь 10 ложек этого вещества. Таким образом, теперь в растворе окажется лишнее вещество. Иначе говоря, при высокой температуре раствор был насыщенным, а остыв, он стал перенасыщенным. Такой перенасыщенный раствор не может долго существовать, поэтому лишнее вещество выделяется из раствора и оседает на дно стакана. Рассмотрите в лупу, и вы увидите, что этот осадок состоит из кристаллов.

Растворенное вещество кристаллизуется из пересыщенных растворов потому, что его оказывается в растворе слишком много - больше, чем раствор может удержать в себе.

Прозрачные кристаллики алюмокалиевых квасцов выросли из водного раствора за несколько часов. Чтобы подготовить водный раствор алюмокалиевых квасцов, надо растворить в 400 см3 горячей воды истолченные в порошок 48 г алюмокалиевых квасцов. Если же растворить 60г квасцов, то получится раствор, перенасыщенный при 15˚C на 12г. Поэтому-то надо брать горячую воду: в холодной не растворились бы больше 48г. Перенасыщенный раствор начнет кристаллизоваться, если в него попадает какая-нибудь «затравка». Для этого достаточно приоткрыть крышку банки на одну- две секунды: в раствор попадут пылинки квасцов из воздуха. Можно также внести в раствор иголкой несколько пылинок квасцов. Попав в перенасыщенный раствор, пылинки квасцов в нем немедленно начнут расти, а уж если в растворе началась кристаллизация, она не остановится, пока не выделится весь избыток растворенного вещества.

Так же можно вырастить один большой кристалл. Для этого в неостывший раствор надо положить или подвести на нитке небольшой кристаллик – «затравку». Сначала он немного растворится, а затем примется расти.

Если в сосуд с раствором опустить какой-нибудь предмет, на котором находится много затравок, то он весь обрастет кристалликами. Опустите в раствор нитку, на которой есть кристаллические пылинки, - на них начнут осаждаться кристаллики, и в результате вырастает «нитка бус» из многогранных кристалликов. Такие нитки по красоте могут соперничать с искусственно ограненными бусами, но, к сожалению, кристаллы, выращенные из водных растворов, обычно очень быстро тускнеют и легко разрушаются. В этом трудность их применения в технике.

Можно сделать фигурки из кристаллов.

Для этого надо приготовить каркас из проволоки, обмотанной обычными нитками или ватой, окунуть его в насыщенный раствор, тут же вынуть и просушить при комнатной температуре. Нитки пропитаются раствором и при высыхании на них образуются мельчайшие кристаллики, которые в дальнейшем послужат «затравками». А дальше опускайте этот каркас в раствор и наращивайте на нем кристаллы. Если опустить в раствор разборную синтетическую елочку, предварительно обмотав ее ствол и ветви нитками, то можно вырастить «заснеженную» елку. Для этого лучше взять не квасцы, а дигидрофосфат калия (КН2РО4) или дигидрофосфат аммония (NH4H2PO4), - замечательные кристаллы, которые растят для приборов, управляющих лучом Лазаря. Их растворимости на 100 г воды:

	При температуре          20˚C          40˚C
         КН2РО4                          22,5г         33г
         NH4H2PO4                     36,5г         56,6г

Эти кристаллы выращены нами в марте –апреле 2010 года

Практическая часть.

                                  Этапы работы над проектом.

Содержание работы на этапе Деятельность учителя Деятельность учащихся

Проведение эксперимента

1. Отбор информации по теме проекта.

2. Изготовление каркасов.

3. Приготовление насыщенных растворов солей.

4. Создание центров кристаллизации на каркасах.

5. Фильтрование растворов.

6. Выращивание кристаллов. Наблюдает, советует, косвенно руководит деятельностью, организует и координирует в случае необходимости отдельные этапы проекта.


--проводят исследования, решая промежуточные задачи,

- ведут фотосъемку всех этапов работы.

Анализ полученных данных и подведение итогов

Анализ полученных данных и подведение итогов

Корректирование выводов участников проекта в ходе анализа полученных данных.

- рассматривают структуру выращенных кристаллов, сравнивают форму, размер, прозрачность.

 - отмечают наличие кристаллов неправильной формы (кристаллов- паразитов).
  - отмечают разную скорость роста кристаллов, возможность использования выращенного кристалла в качестве затравки для дальнейшего роста.

Приложение

Кристаллы сернокислого никеля и медного купороса, выращенные методом испарения.

Кристаллы нитрата алюминия, выращенные методом испарения.

        Кристаллы сернокислого никеля и алюмокалиевых квасцов, выращенные на каркасах.
             
          Размеры кристаллов нитрата алюминия, выращенных методом испарения.
            Кристаллы дихромата калия, выращенные из раствора с использованием «затравок» 
          данного кристалла.
                     
                                              Размеры кристаллов сернокислого никеля.
                     
                                           Размеры кристаллов алюмокалиевых квасцов.
        
                            Кристаллы, выращенные в ходе исследовательской работы.


Список литературы:

1. Пособие по химии для поступающих в ВУЗы.-изд. Московского университета, 1985 г 2. Шаскольская М.П. Кристаллы.- М.:Наука. Главная редакция физико- математической литературы, 1985.-208с. 3. Опыты в домашней лаборатории.- М.: Наука. Главная редакция физико- математической литературы,1980г,144с. 4. Мякишев Г.Я. Физика: Молекулярная физика. Термодинамика. 10 кл.: Учебник для углублённого изучения физики. – 5 изд. – М.: Дрофа, 2002. – 352 с.:ил. 5. Квант: научно-популярный физико-математический журнал. М.: Наука. 1974 г. 6. Проектная деятельность учащихся. Авт.-сост. Н.В.Ширшина. - Волгоград: учитель, 2007. – 184 с. 7. Лекции по общей химии. Л.С. Гузей.: Москва «Первое сентября» 8. Мир химии. Занимательные рассказы о химии. Санкт-Петербург. «Мим-экспресс»